

Treetop Trail at the Minnesota Zoo

A Case Study in Adaptive Reuse

UMN Structural Seminar Series

January 30, 2024

Thomas Root, PE Minnesota Zoo

Jon Wacker, PE HGA

Michael Osowski PCL Construction

Fraser Reid, PE CEng MICE Buro Happold

Craig Huhtala, PE MBJ

Project Partners

SNOW KREILICH ARCHITECTS

BURO HAPPOLD

Project Partners Beyond Design

- Donors private/public
- Community Stakeholders
- Government Partners
 - City of Apple Valley, MN
 - Fire Department
 - Building Officials
 - Fish and Wildlife Service
- Branding/PR/Marketing
- Interpretive and Wayfinding Elements

Presentation Outline

- The Minnesota Zoo and the Monorail
- Project Introduction
- Existing Structure and Assessment
- System Selection
- Live Load Requirements
- Structural Analysis
- Thermal
- Wind / Lateral
- BREAK

- Vibrations
- Capacity Design
- Construction
- Questions

THE MINNESOTA ZOO AND THE MONORAIL

Vision: Our vision is a future where wildlife thrives in Minnesota and beyond.

Mission : To connect people, animals and the natural world to save wildlife.

Values: Stewardship, Excellence with Integrity, Smart Fun, Engage to Inspire, Diversity and Inclusion

About the Minesota Zoo

- Opened to the public in 1978
- Located on 485 acres in Apple Valley, Minnesota it is the 5th largest zoo in the US.
- Home to more than 4,400 animals and 485 species including 68 threatened and endangered species
- Annual attendance of over 1.2 million

8

About the monorail

- Originally referred to as the Skytrail.
- 1.25 miles long with a maximum elevation of 32 ft.
- With a single station, all rides were round trip.
- A monorail trip took about 25 minutes translating to an average speed of about 3 miles per hour.

A Brief History of the Monorail

- May 1978 The Minnesota Zoo opens.
- September 1979 The monorail begins operation. Exhibits and pedestrian routing were deliberately designed to incorporate views from the monorail.
- September 2013 The monorail closes due to aging infrastructure, maintenance challenges due to mechanical obsolescence, and declining ridership.
- 2018 Planning to convert the monorail into Treetop Trail commences.
- January 2021 Design for Treetop Trail kicks off in earnest.
- April 2022 Construction for Treetop Trail begins.
- July 2023 Treetop Trail is completed with a total project cost of \$39M.

MBJ MEYER BORGMAN JOHNSON

Existing Documentation

- Limited documentation was available from the original construction including a partial plan set showing:
 - Geometric alignment of the monorail
 - Typical steel section
 - Splices between track sections
 - Rigid connection to columns
 - Tabulated drilled pier foundation depths.
 - Loading diagram for a monorail train

lep. 16, 1977

UNIVERSAL MOBILITY, INC. - MINNESOTA ZOOLOGICAL GARDENS - ZOORIDE FOUNDATIONS

Support	Type of	Top of	Total length	Hole Infor	mation	
Location	Support	Foundation	of Column	Bottom	Approx.	
Station		Elevation		Elevation	Depth	
0+00	Grade Beam	96.83	None			
0+26	Grade Beam	96.83	None			
0+52	Grade Beam	96.83	None			
1+22	84# column	98.29	34 feet	64.0	20 feet	
1+92		00 05	24 fact	CE E	20 6	
2+55		01 43	34 Teet	69.0	20 feet	
3+15	10 10	02 85	33 Teet	72.5	10 feet	
3+65		04.03	30 feet	72.5	19 feet	
4+10		05.00	31 Teet	72.0	19 feet	
4+71 39	44 15	05.05	33 Teet	72.0	20 feet	
5+04.43		05.33	34 feet	71.0	19 feet	
5+50	н н	05.33	20 foot	75.0	17 Teet	
6+15		05.70	21 foot	70.0	10 feet	
6+80		06.25	30 foot	74.5	10 feet	
7+50		06.25	30 feet	/0.0	10 Teet	
8+20		07.24	23 Teet	83.5	16 feet	
8+90	QA# column	07.24	29 Teet	/8.0	18 feet	
9+60	94# column	07.73	39 feet	68.5	20 feet	
10+20	94# Column	00.22	36 feet	72.0	19 feet	
11+00	94# Column	08.72	3b feet	/2.5	19 feet	
11+70	145# column	09.21	39 feet	/0.0	20 feet	
12+40	145# column	09.71	41 feet	68.5	20 feet	
13+10	145# column	10.20	43 Teet	67.0	21 feet	
13+80	145# column	10.09	43 feet	07.5	21 feet	
14+50	94# column	11.19	41 feet	70.0	20 feet	
15+00	84# column	12 61	40 feet	71.5	20 feet	
15+44	84# column	12.01	35 feet	//.5	19 feet	
16+07	84# column	12 00	31 feet	82.0	18 feet	
16+75	145# column	13.90	34 feet	79.5	1. Teet	
17+40	145# column	14.00	43 Teet	/1.5	21 feet	
18+05	145# column	16.51	43 Teet	72.5	21 reet	1.0
18+67	94# column	17 31	39 foot	72.0	21 feet	
19+37	145# column	18 20	Jo feet	79.0	20 feet	
20+07	145# column	19 10	40 feet	72.0	21 feet	
20+77	145# column	20.00	50 foot	60.5	22 feet	
21+47	145# column	20.89	49 feet	71 5	22 foot	
22+17	145# column	21.79	50 feet	71.5	22 feet	
22+87	145# column	22 68	51 feet	71.5	22 foot	
23+57	145# column	23 58	46 feet	77 5	21 Foot	
24+27	94# column	24.48	39 feet	85.0	20 feet	
24+97	145# column	25 37	43 feet	82.0	2) foot	
25+67	84# column	26.27	23 feet	03.0	15 feet	
26+37	84# column	27 16	27 feet	00.0	13 feet	1
26+95	84# column	27 92	27 feet	00.0	17 feet	
27+50	145# column	28 62	28 Teet	99.5	17 feet	1000
28+20	145# column	20.02	48 feet	80.5	22 feet	
28+90	145# column	29.13	0/ Teet	62.0	38 feet	
29+60	145# column	28.30	6/ feet	62.0	38 feet	
30+30	145# column	28.01	ob teet	62.0	38 feet	
31+00	145# column	27 63	ob feet	62.0	38 feet	1.00
31+70	145# column	27.05	ob feet	01.5	38 feet	
32+40	84# column	26.00	ob feet	62.0	38 feet	1
	off corulin	20.00	29 Teet	97.5	1/ feet	

F mark

Monorail Loading

- Information on the weight of the monorail trains was found in project documentation.
- Cars had a capacity of 96 seated passengers, possibly up to 120 with standing passengers.
- Based on length of car it was determined that the monorail exerted a load of about 1 kip / foot onto the track.

Existing Documentation

- There was a lot important information missing from the existing documentation including:
 - Specifications
 - Geotechnical information
 - General structural notes
 - Material properties Design strengths and material characteristics
 - Connection details at non-rigid connections

PROJECT INTRODUCTION

"By transforming the monorail into a walking trail, visitors are given the opportunity to **immerse themselves in nature**, much like the monorail aimed to do, but with the **freedom to curate their own adventure**"

Supporting MN Zoo Mission

MBJ MEYER BORGMAN JOHNSON

Connecting Existing Zoo Trails and Experiences

Enhancing Access

BURO HAPPOLD

Other Project Constraints

- Disruption Avoidance continuous operation, special events, animal needs, wildlife
- Need to be built from above
- Modular construction
- Accommodate winter construction
- Existing structural capacity
- Existing structural conditions
- Existing infrastructure fiber optic lines
- Budget
- 1.25 miles long
- Designed and built during the global pandemic

EXISTING CONDITIONS

Condition Assessment

- Develop confidence in the accuracy of existing drawings
- Fill in documentation gaps
- Determine extent of deterioration

Rippling of side plates

Fractured Welds

One-way column slider

Two-way column slider

• One-way ground slider

Fixed Column Connection

• Fixed Grade Connection

TRAIL SUPPORTS - KEY PLAN

SYMBOL	DESCRIPTION			
COLUMN SUPPORTS				
	FIXED			
•	ONE-WAY			
•	TWO-WAY			
GRADE SUPPORTS				
	ANCHOR			
	ONE-WAY			
•	TWO-WAY			
•	SPECIAL			

Condition Assessment Scope

- Steel structure
 - Verify detail compliance with existing structure
 - Ultrasonic thickness measurements to estimate section loss
 - Visual weld inspection
 - Mag particle weld inspection
 - o Ultrasonic weld inspection
 - Coupon testing for both strength and chemical composition
- Foundations
 - Top of drilled pier verification
 - Reinforcement verification using ground penetrating radar
 - Concrete sampling for compressive strength testing
 - Parallel seismic testing to estimate pier depths

Steel Testing Methods

Steel Observations Results

See above for apx. Location of thickness readings. Magnetic particle (MT) inspection performed on field weld plate splice inside plate and outside plate. See sketch for approximate location. * Note previously identified side plate splice weld crack report # 1 dated 6-28-21. 11 Angle to tube stitch welds cracked.

38

Steel Material Testing

Snow Kreilich Architects, Inc. 219 North 2nd Street Suite 120 Minneapolis, MN 55401

Project Information:

Test Procedure: ASTM A370 Test Date: 9/20/2021 Gauge Length: 2 Inches Acceptance Criteria: Results Only

Specimen Description:

Geometry Type: Rectangular for Tension

Tensile Test Results								
Sample ID	Width	Thickness	Area	Yield Load	Yield Strength	Tensile Load	Tensile Strength	Elongation After Fracture
1-Side Under Track	0.505 in	0.172 in	0.087 in ³	5564 lbf	63961 lbf/in ²	6544 lbf	75342 lbf/in ²	25.0 %
2 - Side	0.504 in	0.187 in	0.094 in [±]	5604 lbf	59464 lbf/in²	7479 lbf	79357 lbf/in ²	25.3 %
3 - Top Plate	0.508 in	0.390 in	0.198 in ²	10819 lbf	54610 lbf/in2	15993 lbf	80726 lbf/in ²	33.8 %
4 - Upright	0.510 in	0.479 in	0.244 in ²	15060 lbf	61645 lbf/in2	20741 lbf	84905 lbf/in2	36.6 %

Sample ID	Yield Strength
1-Side Under Track	63961 lbf/in ²
2 - Side	59464 lbf/in ²
3 - Top Plate	54610 lbf/in ²
4 - Upright	61646 lbf/in ²

Project B2105206

Steel Material Testing

2810 Clark Avenue * St. Louis, MO 63103-2574 * (314) 531-8080 * FAX (314) 531-8085 Chemical, Metallurgical, Mechanical, Nondestructive, Environmental Testing, Analyses and Field Service.

BRAUN INTER 11001 Hampshi Minneapolis, Mi	TEC CORP ire Avenue S. N 55438			Lab No. 21C-1300 Invoice No. INSTL1205
Attention: Eric	O'Donnell			Page 1 of 1
		REPORT C	F ANALYSIS	
MATERIAL:		Sample 1	, Sample 2, Sar	mple 3, Sample 4
SUBJECT:		Composi	tional Analysis	
TEST METHO	D:	ASTM E4	115-17	
UNITS:		Percent b	y Weight (%)	
METHOD DET	FECTION LIMI	T: 0.01% fo	raluminum	
RESULTS:				
ANALYTE	Sample 1	Sample 2	Sample 3	Sample 4
Total Carbon	0.12	0.11	0.08	0.16
Silicon	0.22	0.44	0.52	0.26
Sulfur	0.020	0.031	0.018	0.026
Manganese	0.60	0.43	0.43	1.06
Phosphorus	0.052	0.047	0.051	0.009
Nickel	0.43	0.20	0.29	0.19
Chromium	0.18	0.88	1.01	0.53
Molybdenum	0.03	0.02	0.02	0.01
Copper	0.31	0.28	0.25	0.31
Vanadium	0.01	0.01	0.01	0.05
Aluminum	0.05	0.01	<0.01	0.02
Iron	Remainder	Remainder	Remainder	Remainder

The Alloys could not be identified.

Identification of tested specimens provided by the client

AN OFFICIAL COPY OF TEST REPORT WILL BE PROVIDED BY THIS LABORATORY ON REQUEST NOT OFFICIAL WITHOUT THE RAISED SEAL OF ST. LOUIS TESTING LABORATORIES, INC. SEE BEAVERUE FOR COMPUTIONS.

Long

al and

ental Testing

Ch

(1) LONGITUDINAL BEND SPECIMENS

(2) TRANSVERSE BEND SPECIMENS

Notes:

- 1. The groove configuration shown is for illustration only. The groove shape tested shall conform to the production groove shape that is being qualified.
- 2. When CVN tests are required, the specimens shall be removed from their locations, as shown in Figure 6.28.
- 3. All dimensions are minimum.
- 4. For 3/0 in [10 mm] plate, a side-bend test may be substituted for each of the required face- and root-bend tests. See Figure 0.0(2) for plate length and location of specimens.

Figure 6.7—Location of Test Specimens on Welded Test Plate 3/8 in [10 mm] Thick and Under-WPS Qualification (see 6.10)

Foundation Testing

Foundation Testing

Figure 2. Concrete Pier Testing Reference Plan

- Station 44+42
 - The concrete pier has a diameter of approximately 3 feet, 6 inches.
 - o The steel column was observed to extend at least 3 feet into the pier.
 - o The uneven surface of the concrete sides suggests that the pier was earth formed.
 - A concrete core was extracted for compressive strength testing. The core has a compressive strength of 4,710 psi.
 - GPR observations from the top and side indicate reinforcing consistent with a cylindrical style reinforcing cage.
 - Vertical bars are spaced at approximately 12 inches.
 - Horizontal bars are spaced at approximately 6 inches.
 - Concrete cover is approximately 6 inches.

BRAUN

Foundation Testing

Credit: Everest Geophysics

Table 1. PIT Data Results

Station Mark	As-Built Record Info	PIT Data Depth
44+42	21-feet	20-feet
45+70	19-feet	17-feet
55+50	19-feet	16-feet
3+65	19-feet	19-feet
16+75	21-feet	21-feet
24+27	21-feet	20-feet
33+91	~15 to 16-feet*	16-feet

Existing Monorail Inspections

- Inspections performed at the start of construction to identify deficiencies with the existing structure requiring repair
 - 100% Visual Testing of welds
 - Ultrasonic testing of 20% top plate CJP welds, Mag particle testing of remainder.
 - Mag particle testing of 50% of side and bottom plate welds
 - Documentation of welding size and pattern
 - Measurement of column plumbness

SYSTEM SELECTION AND SHAPE FINDING

Existing Structural Condition

- 1.25-mile loop
- Typical monorail beam span: 70ft
- Typical column supports: W27
- Drilled piers with dropped columns
- 'Corten' / weathering steel
- No expansion joints: thermal expansion occurs at bends using slide bearings over columns

Existing Structural Condition

Mindset Shift for Adaptive Reuse

Unchallenged requirements

New structure designed to suit requirements

Mindset Shift for Adaptive Reuse

Unchallenged requirements

New structure designed to suit requirements

Existing structure

Define requirements based on capability of existing structure

Limited Number of Structural Variables

Gravity Design

- 1. Trail width
- 2. Weight of decking system
- 3. Live load requirement

Lateral Design

- 4. Guard rail height
- 5. Guard rail porosity

Original vs New Loading Comparison

- Original structure designed for a uniform train load of 1,000 lbs/ft
- New structure, conceptual loading:

De chine a conterne	Trail Width (ft)			
Decking system	8	10	12	
'Heavy' Decking System Dead load= 65psf	1,320	1,650	1,980	
'Light' Decking System Dead load = 25psf	1,000	1,250	1,500	

Note: assuming 100psf live load

Three Conceptual Approaches

- 12ft wide concrete deck system
- Beam, column & foundation strengthening as required to meet demand

- Narrower concrete deck system with supplementary columns & foundations
- 'Tune' width dimension to reduce required strengthening of existing structures

- Narrower lightweight deck system
- 'Tune' width dimension to reduce required strengthening of existing structures

Precast Concrete

MINNESOTA ZOO

BURO HAPPOLD

• Approx. weight: 65psf

- Heaviest structural material meaning increased strengthening of existing structures
- Panels would be smaller vs FRP due to increased weight, meaning more regular joints
- Additional wearing surface requiring periodic maintenance / replacement
- Higher embodied carbon footprint vs structural steel framing

Fiber Reinforced Plastic (FRP)

BURO HAPPOLD

Approx. weight: 15psf

- High strength, lightweight composite structural material
- Relatively common method of construction for bridge structures requiring lightweight decking
- Highly corrosion resistant
- Limited number of suppliers available
- Highest embodied carbon footprint
- Materials not typically recyclable at end of life

Steel Framing with Secondary Decking

- MINNESOTA ZOO
- BURO HAPPOLD

- Approx. weight: 25psf
- Lightweight structural material
- Steel framing to be weathering grade, compatible with existing corten structure
- Various options considered for secondary decking, including timber, recycled plastic and steel grating
- Decking could be easily replaced and different decking systems could be used at different locations on the TTT
- Lowest embodied carbon footprint vs FRP and precast concrete

Tuning the Trail Width Column capacity study

- 3 deck type options:
 - Precast concrete
 - Fiber reinforced plastic
 - Steel + wood decking
- 3 trail width options:
 - 8ft
 - 10ft
 - 12ft
- Column strength checks only (gravity + lateral)
- Results show the percentage of columns requiring reinforcement. Also indicative of expected foundation strengthening.

Performance Considerations

- Self weight of structure: impact to existing foundations
- Speed of construction: labor cost
- Life cycle cost
- Impact on water management
- Recycled content
- Deconstruction and recyclability
- Carbon footprint
- Future maintenance
- Appearance

Structural System Options

Comparison Matrix

Description	FRP	Precast	Steel Structure w/ Decking*
Define 1 Q with 2 hoine the heat			
Rating 1 - 3 with 3 being the best			
Maintenance	2	1	3
Life Cycle Cost	2	1	3
Water Management	1	1	3
Recycled Content	1	2	3
Recyclability / Deconstructability	1	2	3
Carbon Footprint	1	2	3
Replacement	1	1	3
Aesthetic Above	2	2	3
Aesthetic Below	3	3	2
Surface Joints	2	1	3
Wear surface Options / Flexibility	1	1	3
Impact to Existing Foundations	3	1	3
Overall Score	20	18	35

58

Slide 58	
FR0	Do we have a better quality version of this image? Fraser Reid, 2023-10-12T19:34:15.962
M01	New graphic installed over top of old one Michael Osowski, 2023-10-20T12:56:10.867

LIVE LOAD REQUIREMENT

Live Load Requirement

- Live load on deck was significantly higher than self weight of structure, and original 1,000lb/ft design live load
- TTT did not fall under clear structural typology / occupancy under IBC / AASHTO; hence some engineering judgement was necessary to establish a recommended live load provision.
- Minimum code prescribed live loading for similar structures:
 - IBC (ASCE) Public assembly: **100psf** (feasibility study)
 - AASHTO Pedestrian bridges: 90psf
 - IBC (ASCE) Walkways & elevated platforms: 60psf

Slide 60

CH0 Didn't? Craig Huhtala, 2024-01-23T02:33:10.396

Pedestrian Bridge Loading: IBC vs AASHTO

- IBC (ASCE) & AASHTO use different load factors for strength design
- Compare strength level live loading:
 - IBC (ASCE): 1.6x100 = **160psf**
 - AASHTO: 1.75x90 = **158psf**

AASHTO Pedestrian Loading Illustration

50psf

100psf

150psf

Consider Reduced Occupancy for TTT

- **60psf** live load per IBC (ASCE) Walkways & Elevated Platforms
- Approx. 25-30% reduction on strength level loading to existing beam & column structures, depending on deck system selection.
- Significant reduction in required strengthening of existing structures
- Compare 100psf vs 60psf for 70'x10' section of TTT:
 - **100psf** = 70,000lbs = approx. **400 people***
 - **60psf** = 42,000lbs = approx. **240 people***

*Using 175lbs/person

Live Loads - Distributed

Final design live loading per IBC 2018 / ASCE 7-16:

Area	Occupancy	Live Load (psf)
Stairs and entry ramps	Stairs and exit ways	100
Assembly areas	Yards and terraces, pedestrian	100
Main walkway	Walkways and elevated platforms (other than exit ways)	60

Note: all live loads were considered unreducible

Live Loads - Concentrated

Custom wheel loading criteria was developed for maintenance vehicle assuming John Deere Gator vehicle or similar:

- Maximum vehicle weight = 2,000 lbs / Maximum payload weight = 1,000 lbs
- Total vehicle load = 3,000 lbs
- Wheel load = 1,000 lbs

Note: the TTT will be accessible to maintenance vehicles only, hence not subject to passenger vehicle load requirements

Live Load Patterning

- ASCE requires Live Load Patterning
- Complicated for a continuous beam
- LL effect on torsion also considered

4.3.3 Partial Loading. The full intensity of the appropriately reduced live load applied only to a portion of a structure or member shall be accounted for if it produces a more unfavorable load effect than the same intensity applied over the full structure or member. Roof live loads shall be distributed as specified in Table 4.3-1.

SYSTEM BEHAVIOR

Structural Analysis – SAP2000

- Modeled initially for vibration analysis
- Ultimately used for full strength & service checks, due to complexity of 'system' behavior including influence of slide bearings on lateral loading & locked-in thermal forces.

Structural Analysis Model

- Overall geometry of model
- Section types
- Boundary conditions
 - Foundations springs
 - One-way slide bearings
 - Two-way slide bearings
- Load application
- Load combinations

- Foundation springs used to soften model to better represent behavior
- LPile used for analysis
- Different pier depths and loading criteria for each column could require different spring for each column
- Sensitivity analysis justified use of a single set of average stiffness springs in all locations.

8/10/2021

Minnesota Zoo Tree Top Trail Lateral Analysis Results 42-inch Diameter Drilled Shaft with a W27x84 Beam Embedded Full Depth 30 foot Shaft Length

Braun Intertec Project No. B16xxxxx

71

	Γ						
	Applied Loading		Top of Pile	Movement	Stiffness		
Case	Shear (k)	Moment (k-ft)	Disp (in)	Rotation (rad)	K_{Δ} (k/in)	K _θ (k-ft/rad)	
1	25	100	0.2329	0.00141	107	70922	
2	25	425	0.4978	0.00419	50	101432	
3	40	100	0.3864	0.00243	104	41152	
4	40	700	0.9076	0.0076	44	92105	
5	20	55	0.1749	0.00108	114	50926	
6	20	130	0.2168	0.00143	92	90909	
7	15	70	0.1426	0.000924	105	75758	
8	15	150	0.1866	0.00129	80	116279	
9	20	100	0.1999	0.00129	100	77519	

- Translation Stiffness = 100 k/in
- Rotational Stiffness = 75,000 k-ft/rad

- Slide bearing connections required special consideration in the analysis model due to keeper plates
- Modeled as non-linear springs
 - Frictionless until engaging keepers, then column stiffness engaged

Property Name	2-Way Link w/ 3.5in Keepers			
Direction	U2			
Туре	Damper - Friction Spring			
NonLinear	Yes			
Properties Used For Line	ar Analysis Cases			
Effective Stiffness	0.			
Effective Damping	0.			
Shear Deformation Loca	tion			
Distance from End-J	0.			
Properties Used For Non	linear Analysis Cases			
Initial (Nonslipping) St	iffness 1.000E+15			
Slipping Stiffness (Lo	ading) 5.000E-09			
Slipping Stiffness (Un	4.000E-09			
Precompression Disp	lacement 0.			
Stop Displacement	S 3.5			
Active Direction	Both v			

- Load Combinations (more than 5!)
 - o Service and Ultimate
 - o Live load patterning
 - Inside/outside
 - Alternating spans
 - Temperature + and -
- 608 Load Combinations!

2.3 LOAD COMBINATIONS FOR STRENGTH DESIGN

2.3.1 Basic Combinations. Structures, components, and foundations shall be designed so that their design strength equals or exceeds the effects of the factored loads in the following combinations. Effects of one or more loads not acting shall be considered. Seismic load effects shall be combined loads in accordance with Section 2.3.6. Wind and seismic loads need not be considered to act simultaneously. Refer to Sections 1.4, 2.3.6, 12.4, and 12.14.3 for the specific definition of the earthquake load effect *E*. Each relevant strength limit state shall be investigated.

- 1. 1.4D
- 2. $1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$
- 3. $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$
- 4. $1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R)$
- 5. 0.9D + 1.0W

Structural Analysis – Data Management

- 608 LCs, 915 Frames, 951 Points = Millions of data points
- Use of SAP2000 Table data to Excel
 - Frame forces
 - Displacements
 - Reactions
- Use of "Envelope" only is too conservative for section capacity checks
- Selection of like section types prior to export from SAP2000
 - 6 different selection sets

MBJ MEYER BORGMAN JOHNSON

Structural Analysis – Data Management

-	8		C.	U	E		0	n			n.	L IVI	N	0
Model	Model 25.0							~					10	
Description:	Add description her	hiir		Satura de antes antes a		inputs		< (.0	ntrol	lina D	CR	Controllin	na LC	
Location saved:	0		5	ection 12,05 Angles		alculation	/						.9 -0	
Capacities								Controlling LC	ULS.2.1.1-T :	1.2D+1.6LPO+0.				-
phi*Pnt	3650	[k]		Max DCR	0.74	r		P	45.446	(K)		Interactio	n chec	·k
phi*Pnc	-1953	[k]	Soction	Excel RowNumber	5661			Vy	47.664	Did		meracio	in chiec	
phi*Vn-x	392	[k]		Controlling Frame	58			Vx	-14.979	(K)		for each I	C	
phi*Vn-y	1205	[k]						Tn	277.0273	[k-ft]		IOI each L		
phi*Tn	499	[k-ft]	capacitie	es tor				My-y	352.095	[k-ft]				
phi*Mn-y	1420	[k-ft]	1,	•				Mx-x	-195.0326	[k-ft]				
phi*Mn-x+	2681	[k-ft]	each lim	it state									```	\mathbf{N}
phi*Mn-x-	-2560	[k-ft]	each mh		Axial	Vy	Vx	Tn	My-y	Mx-x				\backslash
TABLE: Element Forces - Fra	mes			Max	134.74	87.15	21.01	277.03	492.91	1001.06				
Frame-Text	 Station-ft 	*	OutputCase-Text	CaseType-Text 💌	P-Kip 💌	V2-Kip 💌	V3-Kip 💌	T-Kip-ft 💌	M2-Kip-f	M3-Kip-f	FrameElem-Text	ElemStation-ft GroupName	 RowNumber 	DCR
	3	0 ULS.1 1	L4D	Combination	1.115	8.03	-0.058	4.0417	0.0244	-3.5953 3-1	L.	0	16	0.00
	3 3.38	57 ULS.1 1	L4D	Combination	1.149	11.34	-0.058	8.2983	0.2199	-36.3862 3-1	L	3.3857	17	0.0
	3 6.77	15 ULS.1 1	1.4D	Combination	1.182	14.651	-0.058	12.5548	0.4154	-80.3863 3-3	L	6.7715	18	0.0
	3	0 ULS.2.0.1	L 1.2D+1.6L+0.55	Combination	0.646	18.704	-0.026	3.9416	0.1116	-9.1026 3-1	L	0	19	0.0
	3 3.38	57 ULS.2.0.1	L 1.2D+1.6L+0.55	Combination	0.724	26.295	-0.026	7.5901	0.2004	-85.2806 3-3	C	3.3857	20	0.0
	3 6.77	15 ULS.2.0.1	L 1.2D+1.6L+0.5S	Combination	0.801	33.886	-0.026	11.2385	0.2891	-187.1599 3-1	1	6.7715	21	0.0
	3	0 ULS.2.1.1	L 1.2D+1.6LPO+0.5S	Combination	6.512	14.611	-0.361	18.3065	-0.2947	-5.7716 3-3	L.	0	22	0.0
	3 3.38	57 ULS.2.1.1	l 1.2D+1.6LPO+0.55	Combination	6.576	20.902	-0.361	32.356	0.9273	-65.8923 3-1	L	3.3857	23	0.0
	3 6.77	15 ULS.2.1.1	L 1.2D+1.6LPO+0.5S	Combination	6.64	27.194	-0.361	46.4055	2.1493	-147.3126 3-1	1	6.7715	24	0.0
	3	0 ULS.2.1.2	2 1.2D+1.6LPI+0.55	Combination	-2.487	14.53	0.149	-3.7853	0.3406	-2.3161 3-1	1	0	25	0.0
	3 3.38	57 ULS.2.1.2	2 1.2D+1.6LPI+0.5S	Combination	-2.423	20.821	0.149	-2.737	-0.1655	-62.1596 3-1	1)	3.3857	26	0.0
	3 6.77	15 ULS.2.1.2	2 1.2D+1.6LPI+0.5S	Combination	-2.359	27.112	0.149	-1.6888	-0.6715	-143.3028 3-1	1	6.7715	27	0.0
	3	0 ULS.2.2.1	l 1.2D+1.6LP1+0.5S	Combination	0.538	17.977	-0.011	6.2946	0.159	40.3769 3-1		0	28	0.0
	3 3.38	57 ULS.2.2.1	1 1.2D+1.6LP1+0.5S	Combination	0.616	25.569	-0.011	9.9431	0.196	-33.3408 3-1		3.3857	29	0.0
	3 6.77	15 ULS.2.2.1	L 1.2D+1.6LP1+0.55	Combination	0.693	33.16	-0.011	13.5915	0.2329	-132.7599 3-1	5 <u>7</u>	6.7715	30	0.0
	3	0 ULS.2.2.2	2 1.2D+1.6LP2+0.5S	Combination	1.008	9.731	-0.061	1.197	-0.0102	-53.6419 3-1		0	31	0.0
	3 3.38	57 ULS.2.2.2	2 1.2D+1.6LP2+0.55	Combination	1.046	13.422	-0.061	4.8455	0.195	-92.8369 3-1		3.3857	32	0.0
	3 6.7	15 ULS.2.2.2	2 1.2D+1.6LP2+0.55	Combination	1.084	17.113	-0.061	8.494	0.4002	-144.5282 3-1		6.7715	33	0.0
	3	0 015.2.2.3	5 1.2D+1.6LP3+0.55	Combination	0.787	16.19	-0.037	5.7161	0.0476	35.7916 3-1		0	34	0.0
	3 3.38	57 ULS.Z.2.3	5 1.20+1.6LP3+0.55	Combination	0.864	23.781	-0.037	9.3646	0.1728	-31.875 3-1		3.3857	35	0.0
	3 0.7	15 ULS.2.2.3	5 1.20+1.60P3+0.55	Combination	0.942	31.372	-0.037	13.0131	0.298	-125.243 3-1		6.7/15	30	0.0
	3 33	0 ULS.2.2.4	1.20+1.0LP4+0.55	Combination	0.473	20.817	-0.008166	3./1//	0.2218	-21.0886 3-1		2 2057	3/	0.0
	3 3.38	37 015.2.2.4	1.20+1.00+4+0.55	combination	0.551	28.408	-0.008100	7.3001	0.2495	-105.019 3	51	3.3637	38	0.0

 Different data set for each section type

THERMAL

Thermal Design

- Original 1.25-mile structure had no existing expansion joints.
- Thermal expansion of structure occurred by lateral deflection of columns and sliding of box-beam section over column and ground supports.
- In some conditions, historic movement was observed as being several inches in magnitude!
- The basic design approach was to replicate existing behavior as closely as possible.
- An alternate (traditional) approach with regularly occurring expansion joints would have required new column supports and lateral bracing which would have added significant scope and costs to the project.

Thermal Demands

EXPANSION JOINTS IN BUILDINGS

Technical Report No. 65

Prepared by the Standing Committee on Structural Engineering of the Federal Construction Council Building Research Advisory Board Division of Engineering National Research Council

	Tempe	rature	(°F)
Station	Tw	Tm	Tc
innesota			
Duluth	85	55	-19
International Falls	86	57	-29
Minneapolis/St. Paul	92	62	-14
Rochester	90	60	-17
St. Cloud	90	60	-20

Data from 1972 ASHRAE Handbook of Fundamentals

• 2021 ASHRAE Handbook of Fundamentals

- T_C = -8 °F
- $T_W = 89 \, ^{\circ}F$

NATIONAL ACADEMY OF SCIENCES Washington, D.C. 1974

Thermal Demands

Load combinations including thermal effects:

- A. No temperature loading (basic load combinations)
- 1. 1.4D
- 2. 1.2D + 1.6L + 0.5S
- 3. 1.2D + 1.6S + 1.0L
- 4. 1.2D + 1.0W +1.0L + 0.5S
- 5. 0.9D + 1.0W
- A. Full (100%) live load / Max temperature load: T = +55deg
- 1. 1.4D + **1.0T**
- 2. 1.2D + 1.6L + 0.5S + **1.0T**
- 3. 1.2D + 1.6S + 0.5L + 1.0T
- 4. 1.2D + 1.0W + 0.5L + 0.5S + 1.0T
- 5. 0.9D + 1.0W + **1.0T**
- A. Full (100%) live load / Min temperature load: T = -55deg
- 1. 1.4D + **1.0T**
- 2. 1.2D + 1.6L + 0.5S + **1.0T**
- 3. 1.2D + 1.6S + 1.0L + 1.0T
- 4. 1.2D + 1.0W +1.0L + 0.5S + 1.0T
- 5. 0.9D + 1.0W + 1.0T

MINNESOTA ZOO

2.3.4 Load Combinations Including Self-Straining Forces and Effects. Where the structural effects of T are expected to adversely affect structural safety or performance, T shall be considered in combination with other loads. The load factor on T shall be established considering the uncertainty associated with the likely magnitude of the structural forces and effects, the probability that the maximum effect of T will occur simultaneously with other applied loadings, and the potential adverse consequences if the effect of T is greater than assumed. The load factor on T shall not have a value less than 1.0.

Thermal Movement

Straight line expansion/contraction

 $\begin{array}{l} {\sf L}_0\approx 6600'\\ \alpha\ =\ 0.0000065\ in/in^{*\circ}{\sf F}\\ {\Delta_t}\ =\ 55^{\circ}{\sf F}\\ d{\sf L}_0\ =\ 6600'\ x\ 55^{\circ}\ x\ 0.0000065\ =\ 2.36' \end{array}$

Radial expansion/contraction

```
Circumference \approx 6600'

D_0 \approx 2100.8'

\alpha = 0.0000065 \text{ in/in*}^{\circ}\text{F}

\Delta_t = 55^{\circ}\text{F}

dD_0 = 6600' \times 55^{\circ} \times 0.0000065 / \pi = 0.75'
```

Actual trail has both straight line and radial expansion behavior

Thermal Design

83

Existing Structure Support Conditions

TRAIL SUPPORTS - KEY PLAN

SYMBOL	DESCRIPTION	FIXITY ASSUMPTIONS(*)							
		U1	U2	U3	R1	R2	R3		
COLUMN SI	JPPORTS								
	FIXED	\times	\times	\times	\times	\times	\times		
	ONE-WAY	\times		\times					
•	TWO-WAY			\times					
GRADE SUF	PORTS								
	ANCHOR	\times	\times	\times	\times	\times	\times		
	ONE-WAY	\times		\times		\times			
-	TWO-WAY			\times					
•	SPECIAL	\times		\times	\times	\times	\times		

(*) SIGN CONVENTION NOTES: U INDICATES TRANSLATIONAL FIXITY R INDICATES ROTATIONAL FIXITY DIRECTION 1 = AXIS PERPENDICULAR TO BEAM DIRECTION 2 = AXIS PARALLEL TO BEAM DIRECTION 3 = VERTICAL AXIS "X" INDICATES FIXITY IN THE APPLICABLE DIRECTION

Support Conditions

One-way column slider

Two-way column slider

• One-way ground slider

Existing Structure Support Conditions One-way ground slider

BURO HAPPOLD

MBJ MEYER BORGMAN JOHNSON

MINNESOTA ZOO

Thermal Design & Modeling

- ASCE 7 requires temperature loading to be applied (1.0 factor) in combination with all strength design combinations
- Due to nature of existing condition, 'locked-in' thermal forces were significant
 - The addition of supports / restraints (e.g. to resist torsion) was found to exacerbate these effects
 - A 'brute force' approach to thermal design is typically a losing battle, since increased stiffness will lead to increased thermal loading!
- Thermal modeling considerations:
 - Temperature range
 - Foundation stiffness
 - Simplified section parameters to minimize design iterations

Thermal Design Approach

- Ultimately, the design approach used a combination of:
 - 'Fine tuning' the existing condition
 - Replacement of bearing elements at sliding connections
 - Localized strengthening where required

WIND/LATERAL

- Determination of appropriate wind loads required substantial engineering judgement.
 - Not a building
 - Not a bridge
- Continuous guardrail represented the possibility of significantly higher lateral wind loading on the structure than would have occurred during monorail operation
- Develop confidence by referencing multiple sources

Wind Loading – ASCE 7-16

- ASCE 7-16
 - 109 mph wind speed (700yr MRI)
 - Exposure category C

26.10.2 Velocity Pressure. Velocity pressure, q_z , evaluated at height z above ground shall be calculated by the following equation:

 $q_z = 0.00256K_zK_{zt}K_dK_eV^2$ (lb/ft²); V in mi/h (26.10-1)

 $q_z = 0.00256(1.0)(1)(.85)(1)(109mph)^2 = 25.9 psf$

- Box beam and trail structure is like a solid sign.
- Guardrail is like an open sign or frame.

Wind Loading – ASCE 7-16

Trail Structure

29.3.1 Solid Freestanding Walls and Solid Freestanding Signs. The design wind force for solid freestanding walls and solid freestanding signs shall be determined by the following formula:

$$F = q_h G C_f A_s (lb) \tag{29.3-1}$$

 C_{f} = 1.95 based on applied parameters (maximum value in specification)

F = 25.9psf(0.85)*1.92*As= 42.3 psf * As = 42.3 psf * 3.5 ft = 148 plf

Wind Load on Trail Superstructure:

WL = 148 plf + 42 plf = 190 plf

Railing

29.4 DESIGN WIND LOADS: OTHER STRUCTURES

The design wind force for other structures (chimneys, tanks, open signs, single-plane open frames, and trussed towers), whether ground or roof mounted, shall be determined by the following equation:

$$F = q_z G C_f A_f (lb) \tag{29.4-1}$$

Force Coefficients, Cf

		Rounded	Members
ε	Flat-Sided Members	$D_{\sqrt{q_z}} \le 2.5$ $(D_{\sqrt{q_z}} \le 5.3)$ s.i	$D\sqrt{q_z}$ > 2.5 $(D\sqrt{q_z}$ > 5.3) s.i
<0.1	2.0	1.2	0.8
0.1 to 0.29	1.8	1.3	0.9
0.3 to 0.7	1.6	1.5	1.1

 $C_f = 1.8$ for flat sided members with 15% solidity

F = 25.9psf(0.85)*1.8*Af = 25.9psf(0.85)(1.8)(0.15)As= 5.95 psf * As

= 5.95 psf * 3.5 ft * 2 = 42 plf

Wind Loading - AASHTO

- AASHTO LRFD Bridge Specification
 - 115 mph wind speed (700 yr MRI)
 - Exposure Category C
 - o 100% Transverse, 25% longitudinal
 - o 177 plf transverse, 44 plf longitudinal

- AASHTO LRFD Sign Specification
 - 115 mph wind speed (700 yr MRI)
 - Exposure Category C
 - o 254 plf transverse

Use ASCE 7 wind load as it appears reasonable and is bounded by AASHTO values

- Freeform shape of treetop trail makes defining primary wind directions impossible.
- Given any wind direction, it will intersect different portions of the trail at different angles.
- Utilize AASHTO Skew Angle Coefficients to account for varying angle of application.

Skew	Transverse	Longitudinal
Angle	Coefficient	Coefficient
0	1.00	0
15	0.88	0.12
30	0.82	0.24
45	0.66	0.32
60	0.34	0.38

MBJ

MITT

BURO HAPPOLD

Column Reinforcement First Pass – No Lateral Bracing

Vertical Bracing

Vertical Bracing

Column Reinforcement Final Design – With Lateral Bracing

- 0.75" Strengthening Required (19)
- Add'l Strengthening Required (0)

Column Reinforcing

	REINFORCEMENT TYPE
	RI
LATE THICKNESS, T	3/4*
ELD 1 LENGTH, W1_L	96"
ELD 1 THICKNESS, W1_T	1/4*
ELD 2 LENGTH, W2_L	2'@4*
ELD 2 THICKNESS, W2, T	1/4*

NOTE: 1. REFERENCE \$4.01 FOR EXISTING COLUMN REINFORCEMENT ASSIGNMENTS.

101

VIBRATION

Fig. 2.1 Recommended peak acceleration for human comfort for vibrations due to human activities (Allen and Murray, 1993; ISO 2631-2: 1989).

103

Vibrations

$$\frac{a_p}{g} = \frac{P_o \exp\left(-0.35f_n\right)}{\beta W}$$

- Preliminary walking vibration check
 - \circ P_o = 92 lbs (Table 4.1)
 - o $f_n = 4.92$ Hz (from SAP model)
 - Beta = 1.0% (Table 4.1) possibly unconservative
 - W = 34,720 lb (Dead load of a single span)
 - o $a_p = 92 \text{ lbs * exp } (-0.35*4.92 \text{ Hz}) / (0.01*34720 \text{ lb}) * g = 4.74\% \text{ g} < 5.0\% \text{ g OK}!!!$
 - Vibrations will be noticeable
 - This is for one person walking, what about a group?
 - What if someone starts running

Vibrations

- Standard evaluation for walking excitation unchanged.
- Method for evaluating running excitation added!

$$\frac{a_p}{g} = \frac{0.79Q(e^{-0.173f_n})}{\beta W}$$

• Guidance for incorporating group effects added!

P_{group} = sqrt(n) * P_o Finite element analysis method added!!!!!

Chapter 7! Chapter 7! Chapter 7!

Vibrations

$$\frac{a_p}{g} = \frac{0.79Q(e^{-0.173f_n})}{\beta W}$$

- Preliminary running vibration check
 - Q = 168 lbs (Table 4.1)
 - $f_n = 4.92$ Hz (from SAP model)
 - Beta = 1.0% (Table 4.1) possibly unconservative
 - W = 34,720 lb (Dead load of a single span)
 - a_p = 0.79*168 lbs*exp(-0.173*4.92Hz)/(0.01*34720 lb)*g=16.3% g >> 5.0%g

¹⁰ Running on the trail isn't a great idea

Finite Element Method for Vibration Analysis

• Finite Element Method for Vibration Analysis

- Finite Element Model for Vibrations
 - Limit model to 3 spans with mass to prevent model for predicting motion a great distances from the area of excitation overestimate modal mass and underestimating acceleration response.
 - Add a massless span on each end to capture continuity effects
 - Column bases assumed to be fully fixed
 - Beam and column connections assumed to be fixed
 - Decking and railings included only as mass
 - 1% viscous damping (probably an overestimate)
 - Assume walker and bystander are both at midspan
 - Perform eigen analysis in SAP or RISA to find all modes under 9 Hz

	Mode	Frequency (Period (S	SX Participati	SY Participati	SZ Participati
1	1	6.003	0.167		3.768	
2	2	7.669	0.13			
3	3	9.85	0.102		72.162	
4	4	11.353	0.088	94.321		
5	5	21.235	0.047			
6	6	23.412	0.043		0.724	
7	7	26.265	0.038			
8	8	35.976	0.028	4.65		
9	9	45.426	0.022		1.599	
10	10	45.983	0.022			
11	11	46.952	0.021		15.731	
12	12	63.154	0.016	0.689		
13	Totals:			99.665	93.985	

111

Acceleration Calculation (Chp7)

$$a_p = FRF_{Max}\alpha Q\rho \tag{7-1}$$

where

- FRF_{Max} = maximum FRF magnitude at frequencies below 9 Hz, %g/lb
- Q = bodyweight = 168 lb
- α = dynamic coefficient
- ρ = resonant build-up factor

The dynamic coefficient is computed using the following equation, which approximates the Willford et al. (2007) second through fourth harmonic dynamic coefficients in Table 1-1. The equation was derived using the procedure described in Section 2.2.1.

$$\alpha = 0.09e^{-0.075fn} \tag{7-2}$$

where

 f_n = dominant frequency, Hz

A frequency response function (FRF)—a plot of steadystate response due to sinusoidal load with unit amplitude versus frequency—is used to determine which mode(s) provides highest response, thus solving the problem.

Fig. 7-4. Example predicted FRF for framing in Figure 7-1.

Mode1:

- o $f_1 = 6.00$ Hz phi = 2.57
- FRF = $0.332 \text{ in}^2/\text{s}^2/\text{lb}$
- a = .332*.09*e^(-.075*6.00)*168lb*.75
 = 2.40 in2/s = 0.6%g
- Mode 2:
 - f₂ = 7.67 Hz phi = 3.51
 - o FRF = $0.614 \text{ in}^2/\text{s}^2/\text{lb}$
 - o a = .614*.09*e^(-.075*7.67)*168lb*.75 = 3.92 in2/s = 1.0%g
- Mode 3:
 - o f₃ = 9.85 Hz phi = 2.53 FRF = .324

- Mode 2 controls response:
 - Acceleration = 1.0%g < 5.0%g
 - 25 people walking randomly will potential reach the 5% criteria.
 - Great!
 - But why did the numbers go down so much?

Chapter 4 and chapter 7 of design guide 11 use different forces to represent walking

Table 1-1. Fourier Series Parameters for Individuals							
Activity	Source	Q, lb	f _{step} Range, Hz	Dynamic Coefficients, α_i	Phase Lag, ¢ _i , radians		
Chp 4 —>	Rainer et al. (1988) Allen and Murray (1993)	157	1.6–2.2	0.5, 0.2, 0.1, 0.05	-		
Walking Chp 7 —	Willford et al. (2007) Smith et al. (2007) Davis and Murray (2010)	168	1.6–2.2	0.4,0.07 0.06, 0.05	0, -π/2, π, π/2		

- For second harmonic, Willford estimates about 37% of Allen and Murray excitation.
- For third harmonic, Willford estimates about 64% of Allen and Murray excitation.
 - Who's correct?

The first four harmonics of footfall forces.

Vibrations

- Lateral and longitudinal vibrations just as concerning as vertical
- Maintain minimum frequencies to avoid first harmonic excitation
 - Longitudinal natural frequency > ~2.2 to 2.5 Hz
 - Lateral natural frequency > ~ 1.2 to 1.3 HZ

BURO HAPPOLD

 Achieve a low probability of adverse comment

Figure 4-1: Comparison of vibration assessment of two footbridges

CAPACITY DESIGN

Beam Strengthening Approach

Beam Strengthening Approach

MINNESOTA ZOO

Beam Section Analysis

- Analyzed existing and new beam sections with SAP2000 and hand calculations
- Steel checks per AISC 360-16 chapter F7
 - Flexure
 - Combined shear and torsion
 - Weld capacities
- Used to determine required beam strengthening and welds

Beam Section Capacity

BURO HAPPOLD

- How do you calculate the section capacity of an existing, built-up, singly symmetric member?
 - Tension
 - Compression
 - Major Axis Bending
 - Minor Axis Bending
 - Shear

MEYER BORGMAN JOHNSON

MBI

- Torsion
- Check existing welds and size new welds.

123

Major Axis Bending with Section F7 – Square and Rectangular HSS and Box-Shaped Members

- Section F12 directs the designer to determine F_{cr} "by analysis"
- Section F7 provides calculations for F_{cr} for geometries similar to the built up section
- F1. General Provisions
- F2. Doubly Symmetric Compact I-Shaped Members and Channels Bent About Their Major Axis
- F5. Doubly Symmetric I-Shaped Members with Compact Webs and Noncompact or Slender Flanges Bent About Their Major Axis
- F4. Other I-Shaped Members With Compact or Noncompact Webs Bent About Their Major Axis
- F5. Doubly Symmetric and Singly Symmetric I-Shaped Members With Slender Webs Bent About Their Major Axis
- F6. I-Shaped Members and Channels Bent About Their Minor Axis
- F7. Square and Rectangular HSS and Box-Shaped Members
- F8. Round HSS
- T9. Tees and Double Angles Loaded in the Plane of Symmetry
- F10. Single Angles
- Fil. Rectangular Bars and Rounds
- F12. Unsymmetrical Shapes
- Fi3. Proportions of Beams and Girders

Major Axis Bending with Section F7 – Square and Rectangular HSS and Box-Shaped Members

- Approximate the built-up section as a "box shaped member"
- Use Section F7 design calculations with section properties of the real built-up
 - section

BURO HAPPOLD

F7. SQUARE AND RECTANGULAR HSS AND BOX-SHAPED MEMBERS

This section applies to square and rectangular *HSS*, and doubly symmetric boxshaped members bent about either axis, having compact or noncompact webs and compact, noncompact or slender flanges as defined in Section B4.1 for flexure.

The nominal flexural strength, M_n , shall be the lowest value obtained according to the *limit states* of *yielding (plastic moment)*, flange *local buckling* and web local buckling under pure flexure.

User Note: Very long rectangular HSS bent about the major axis are subject to *lateral-torsional buckling*; however, the Specification provides no strength equation for this limit state since *beam* deflection will control for all reasonable cases.

1. Yielding

 $M_n = M_p = F_y Z$ (F7-1)

where

Z = plastic section modulus about the axis of bending, in.³ (mm³)

2. Flange Local Buckling

(a) For *compact sections*, the *limit state* of flange *local buckling* does not apply.(b) For sections with noncompact flanges

$$M_n = M_p - \left(M_p - F_y S\right) \left(3.57 \frac{b}{t_f} \sqrt{\frac{F_y}{E}} - 4.0\right) \le M_p$$
 (F7-2)

(c) For sections with slender flanges

$$M_n = F_y S_e$$
 (F7-3)

where

 S_e = effective section modulus determined with the effective width, b_e , of the compression flange taken as:

$$b_e = 1.92t_f \sqrt{\frac{E}{F_y}} \left[1 - \frac{0.38}{b/t_f} \sqrt{\frac{E}{F_y}} \right] \le b$$
(F7-4)

3. Web Local Buckling

(a) For *compact sections*, the *limit state* of web *local buckling* does not apply.(b) For sections with noncompact webs

$$M_{n} = M_{p} - \left(M_{p} - F_{y}S\right) \left(0.305 \frac{h}{t_{w}} \sqrt{\frac{F_{y}}{E}} - 0.738\right) \le M_{p}$$
(F7-5)

- Start with Flange Local Buckling
- We have slender flanges
- Steps:
- 1. Determine b effective
- 2. Remove remainder of compression flange from cross section
- Calculate new effective section 3. properties

- Start with Flange Local Buckling
- We have slender flanges
- Steps:
- 1. Determine b effective
- 2. Remove remainder of compression flange from cross section
- 3. Calculate new effective section properties (using SAP)

$$b_e = 1.92t_f \sqrt{\frac{E}{F_y}} \left[1 - \frac{0.38}{b/t_f} \sqrt{\frac{E}{F_y}} \right] \le b$$

- Start with Flange Local Buckling
- We have slender flanges
- Steps:
- 1. Determine b effective
- 2. Remove remainder of compression flange from cross section
- 3. Calculate new effective section properties (using SAP)

$$b_e = 1.92t_f \sqrt{\frac{E}{F_y}} \left[1 - \frac{0.38}{b/t_f} \sqrt{\frac{E}{F_y}} \right] \le b$$

- Start with Flange Local Buckling
- We have slender flanges
- Steps:
- 1. Determine b effective
- 2. Remove remainder of compression flange from cross section
- 3. Calculate new effective section properties (using SAP)

- Calculate Yielding and Web Local Buckling
- Yielding:
 - Mn = $M_p = F_y^*Z$
- Web Local Buckling
 - We have noncompact webs
 - Portion of web that can buckle is "h"

3. Web Local Buckling

- (a) For compact sections, the limit state of web local buckling does not apply.
- (b) For sections with noncompact webs

$$M_{n} = M_{p} - \left(M_{p} - F_{y}S\right) \left(0.305 \frac{h}{t_{w}} \sqrt{\frac{F_{y}}{E}} - 0.738\right) \le M_{p}$$
(F7-5)

Major Axis Bending with Section F7 – Square and Rectangular HSS and Box-Shaped Members

 Lowest value of Mn from Yielding, Flange Local Buckling, and Web Local Buckling determines the nominal flexural strength.

BURO HAPPOLD

MEYER

BORGMAN

F7. SQUARE AND RECTANGULAR HSS AND BOX-SHAPED MEMBERS

This section applies to square and rectangular *HSS*, and doubly symmetric boxshaped members bent about either axis, having compact or noncompact webs and compact, noncompact or slender flanges as defined in Section B4.1 for flexure.

The nominal flexural strength, M_n , shall be the lowest value obtained according to the *limit states* of *yielding (plastic moment)*, flange *local buckling* and web local buckling under pure flexure.

User Note: Very long rectangular HSS bent about the major axis are subject to *lateral-torsional buckling*; however, the Specification provides no strength equation for this limit state since *beam* deflection will control for all reasonable cases.

1. Yielding

 $M_n = M_p = F_v Z \tag{F7-1}$

where

Z = plastic section modulus about the axis of bending, in.³ (mm³)

2. Flange Local Buckling

(a) For *compact sections*, the *limit state* of flange *local buckling* does not apply.(b) For sections with noncompact flanges

$$M_n = M_p - \left(M_p - F_y S\right) \left(3.57 \frac{b}{t_f} \sqrt{\frac{F_y}{E}} - 4.0\right) \le M_p \tag{F7-2}$$

(c) For sections with slender flanges

$$M_n = F_y S_c$$
 (F7-3)

where

 S_e = effective section modulus determined with the effective width, b_e , of the compression flange taken as:

$$b_e = 1.92t_f \sqrt{\frac{E}{F_y}} \left[1 - \frac{0.38}{b/t_f} \sqrt{\frac{E}{F_y}} \right] \le b \tag{F7-4}$$

3. Web Local Buckling

(a) For *compact sections*, the *limit state* of web *local buckling* does not apply.(b) For sections with noncompact webs

$$M_{n} = M_{p} - \left(M_{p} - F_{y}S\right) \left(0.305 \frac{h}{t_{w}} \sqrt{\frac{F_{y}}{E}} - 0.738\right) \le M_{p}$$
(F7-5)

131

Use same approach as major axis with F7 checks

BURO HAPPOLD

F7. SQUARE AND RECTANGULAR HSS AND BOX-SHAPED MEMBERS

This section applies to square and rectangular HSS, and doubly symmetric boxshaped members bent about either axis, having compact or noncompact webs and compact, noncompact or slender flanges as defined in Section B4.1 for flexure.

The nominal flexural strength, M_n , shall be the lowest value obtained according to the limit states of yielding (plastic moment), flange local buckling and web local buckling under pure flexure.

User Note: Very long rectangular HSS bent about the major axis are subject to lateral-torsional buckling; however, the Specification provides no strength equation for this limit state since beam deflection will control for all reasonable cases.

1. Yielding

where

(F7-1)

(F7-3)

Z = plastic section modulus about the axis of bending, in.³ (mm³)

 $M_n = M_p = F_y Z$

Flange Local Buckling 2.

(a) For compact sections, the limit state of flange local buckling does not apply. (b) For sections with noncompact flanges

$$M_n = M_p - (M_p - F_y S) \left(3.57 \frac{b}{t_f} \sqrt{\frac{F_y}{E}} - 4.0 \right) \le M_p$$
 (F7-2)

(c) For sections with slender flanges

$$M_n = F_y S_e$$

where S_e = effective section modulus determined with the effective width, b_e , of the compression flange taken as:

$$b_e = 1.92 t_f \sqrt{\frac{E}{F_y}} \left[1 - \frac{0.38}{b/t_f} \sqrt{\frac{E}{F_y}} \right] \le b$$
 (F7-4)

3. Web Local Buckling

(a) For compact sections, the limit state of web local buckling does not apply. (b) For sections with noncompact webs

$$M_n = M_p - \left(M_p - F_y S\right) \left(0.305 \frac{h}{t_w} \sqrt{\frac{F_y}{E}} - 0.738\right) \le M_p \tag{F7-5}$$

- Calculate F_{cr} based on Q
- Q: Net reduction factor for all slender elements
 - $Q = Q_s Q_a$

E7. MEMBERS WITH SLENDER ELEMENTS

This section applies to slender-element compression members, as defined in Section B4.1 for elements in uniform compression.

The nominal compressive strength, P_n , shall be the lowest value based on the applicable limit states of flexural buckling, torsional buckling, and flexural-torsional buckling.

$$P_n = F_{cr} A_g \tag{E7-1}$$

The critical stress, F_{cr} , shall be determined as follows:

(a) When
$$\frac{KL}{r} \le 4.71 \sqrt{\frac{E}{QF_y}}$$
 (or $\frac{QF_y}{F_e} \le 2.25$)
 $F_{cr} = Q \left[0.658 \frac{QF_y}{F_e} \right] F_y$ (E7-2)
(b) When $\frac{KL}{r} > 4.71 \sqrt{\frac{E}{QF_y}}$ (or $\frac{QF_y}{F_e} > 2.25$)
 $F_{cr} = 0.877F_e$ (E7-3)

- Calculate Q_s for slender *unstiffened* elements
- Calculate Q_a for slender *stiffened* elements
- $Q = Q_s * Q_a$
- Use Q to calculate F_{cr}

Slender unstiffened elements:

MBJ MEYER BORGMAN JOHNSON

- Calculate Q_s for slender stiffened elements
- Calculate Q_a for slender stiffened elements
- $Q = Q_s * Q_a$
- Use Q to calculate F_{cr}

Slender unstiffened elements:

- Calculate Q_s for slender stiffened elements
- Calculate Q_a for slender stiffened elements
- $Q = Q_s * Q_a$
- Use Q to calculate F_{cr}

The critical stress, Fcr, shall be determined as follows:

(a) When
$$\frac{KL}{r} \le 4.71 \sqrt{\frac{E}{QF_y}}$$
 (or $\frac{QF_y}{F_e} \le 2.25$)
 $F_{cr} = Q \left[0.658^{\frac{QF_r}{F_e}} \right] F_y$
(b) When $\frac{KL}{r} > 4.71 \sqrt{\frac{E}{QF_y}}$ (or $\frac{QF_y}{F_e} > 2.25$)
 $F_{cr} = 0.877F_e$

Shear Capacity with Section G2 – Members with Unstiffened or Stiffened Webs

 Calculate the shear capacity of individual web elements and add them all together.

G2. MEMBERS WITH UNSTIFFENED OR STIFFENED WEBS

1. Shear Strength

This section applies to webs of singly or doubly symmetric members and channels subject to shear in the plane of the web.

The nominal shear strength, V_n , of unstiffened or stiffened webs according to the *limit states* of *shear yielding* and *shear buckling*, is

$$V_n = 0.6F_y A_w C_v \tag{G2-1}$$

1/2" Plates:	HSS 6x4x3/16"	3/16" Plates:	8"x3/4" Plates:
h/tw = 9.5"/0.5" = 19	h/tw = 5.478"/0.174" = 31.5	h/tw = 24"/0.1875" = 128	h/tw = 8"/0.75" = 10.7
1.1*sqrt(kv*E/Fy) = 59.2	1.1*sqrt(kv*E/Fy) = 59.2	1.1*sqrt(kv*E/Fy) = 59.2	1.1*sqrt(kv*E/Fy) = 29.0
and the second of the second of the second distribution		1.37*sqrt(kv*E/Fy) = 73.8	1.37*sqrt(kv*E/Fy) = 36.14
h/tw < 1.1*sqrt(kv*E/Fy)	h/tw < 1.1*sqrt(kv*E/Fy)		
Such Such		h/tw > 1.37*sqrt(kv*E/Fy)	h/tw < 1.1*sart(kv*E/Fy)
so C v = 1	so C v = 1		
		so C_v = 1.51k_v*E/ ((h/tw)^2 Fy)	so C_v = 1

V_n = 0.6 * (50 ksi) * [(9.5 in² * 1) * (3.8 in² * 1) * (9 in² * 0.267) * (12 in² * 1)] = 831 kips

V_c = phi_v * V_n = 0.9*831 = 747.9 kips

Shear Capacity with Section G2 – Members with Unstiffened or Stiffened Webs

 Calculate the shear capacity of individual web elements and add them all together.

G2. MEMBERS WITH UNSTIFFENED OR STIFFENED WEBS

1. Shear Strength

This section applies to webs of singly or doubly symmetric members and channels subject to shear in the plane of the web.

The nominal shear strength, V_n , of unstiffened or stiffened webs according to the *limit states* of *shear yielding* and *shear buckling*, is

$$V_n = 0.6F_y A_w C_v$$
 (G2-1)

 $\label{eq:V_n} V_n = 0.6 * (50 \mbox{ ksi}) * [\ (16 \mbox{ in}^2 * 0.926) + (15 \mbox{ in}^2 * 1) + (2.4 \mbox{ in}^2 * 1) + (4.92 \mbox{ in}^2 * 1) + (12 \mbox{ in}^2 * 1)] = 1474 \mbox{ kips} \\ V_c = phi_v * V_n = 0.9 * 1474 = 1327 \mbox{ kips} \mbox{ (Reinforced Heavy Option)}$

Torsion Capacity with Section H2 – HSS Subject to Combined Torsion Shear, Flexure, and Axial Force

- The beam section is required to carry torsion from dead load (due to the curvature of the beam and the eccentric deck), and torsion from wind and unbalanced live loads on the deck.
- We don't have an HSS section, but the approach is to analyze a conservative simplification "box" structure

Torsion Capacity with Section H2 – HSS Subject to Combined Torsion Shear, Flexure, and Axial Force

- Need to calculate C, the torsional constant
- Need to calculate F_{cr}

User Note: The torsional constant, C, may be conservatively taken as:

For rectangular HSS: $C = 2(B-t)(H-t)t - 4.5(4-\pi)t^3$

For round HSS: $C = \frac{\pi (D-t)^2 t}{2}$

Capacity Diagram

Where Tr < 0.2 Tc:
(a) When
$$\frac{P_r}{P_c} \ge 0.2$$

 $\frac{P_r}{P_c} + \frac{8}{9} \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) \le 1.0$
(b) When $\frac{P_r}{P_c} < 0.2$
 $\frac{P_r}{2P_c} + \left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}} \right) \le 1.0$

Where Tr > 0.2 Tc:

$$\left(\frac{P_r}{P_c} + \frac{M_r}{M_c}\right) + \left(\frac{V_r}{V_c} + \frac{T_r}{T_c}\right)^2 \le 1.0$$

Beam Weld Calculations

- New and existing welds must transfer flexural and torsional shear flows
- q denotes shear flow
 - $q = q_f + q_t$
- For flexure, q_f=VQ/I
 - V is shear
 - Q is A*y and changes on each weld
 - I is moment of inertia
- For torsion, q_t=Tt/C
 - T is torsion
 - t is member thickness
 - C is torsional shear constant, consistent for the whole section

CONSTRUCTION CHALLENGES & INNOVATION

BUILDING IN THE WOODS

BUILDING NEXT TO EXISTING STRUCTURES

MINNESOTA ZOO

BUILDING OVER WETLANDS & MARSHES

BUILDING OVER GUESTS & EXHIBITS

BUILDING OVER WATER

BURO HAPPOLD

ORIGINAL TROLLEY

THE NEW TROLLEY

- Remove Bus Bars
- Test & Inspect the Entire Monorail
- Weld & Repair as Required
- Remove / Relocate Existing Conduit & Fiber
- Install 10 X 10 X 3/4" Stiffener Angle to Underside of Entire Trail

Section "A"

MODULAR SECTIONS

Section F-F

MO0

MINNESOTA ZOO

Slide 162

MO0 Added new video Michael Osowski, 2023-11-20T14:43:05.898

Thank you for your time!

Tom Root, Minnesota Zoo Fraser Reid, Buro Happold Jon Wacker, Craig Huhtala, MBJ Michael Osowski, PCL

