Designing for Construction Productivity and Safety

College of Continuing & Professional Studies

2024 Structural Engineering Series

Jared M. Reigstad, P.E., P.Eng.

Vice President

jmreigstad@pourstrip0.com

651-248-0593

McKinsey&Company

MCKINSEY GLOBAL INSTITUTE REINVENTING CONSTRUCTION: A ROUTE TO HIGHER PRODUCTIVITY FEBRUARY 2017

IN COLLABORATION WITH MCKINSEY'S CAPITAL PROJECTS & INFRASTRUCTURE PRACTICE

EXECUTIVE SUMMARY

In the United States, labor productivity in construction has declined since 1968, in contrast to rising productivity in other sectors

An ACI Center of Excellence for Advancing Productivity PRO: An ACI Center of Excellence for Advancing Productivity is a catalyst for solving the barriers of constructability to advance concrete construction productivity.

Vision

According to McKinsey Global Institute, construction productivity lags behind other sectors. With a single focus to quickly stimulate industry change, PRO aims to increase the value of structural concrete to project owners.

The Center envisions a concrete industry where the productivity potential of contemporary materials and construction systems is fully realized and continually advanced.

INCREASE PRODUCTIVITY

REDUCE COSTS

ACCELERATE CONSTRUCTION

IMPROVE SAFETY

HIGHER QUALITY CONCRETE

PS=Ø[®] - MECHANICAL SPLICE

Eliminates pour strips, wall leave-outs, and expansion joints while maintaining structural integrity and allowing for volume change. Using proven coupler technologies recognized worldwide, featuring a thread on one end and a grout-filled sleeve on the other. The system is an ACI 318 code compliant full-tension mechanical Type 1 and Type 2 rebar splice, is ICC approved and made in the USA.

The Main Issue

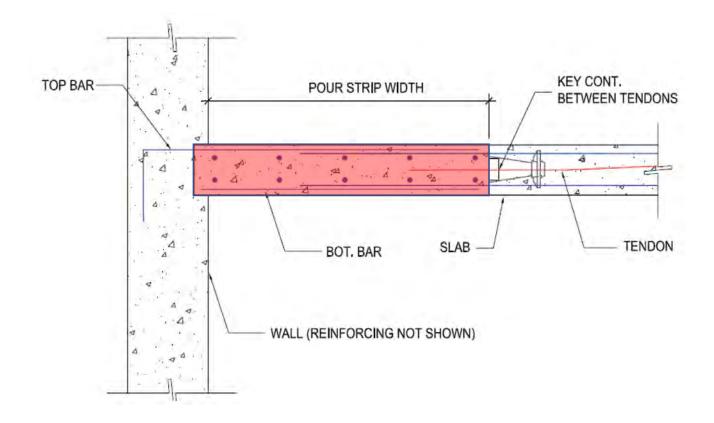
• Volume change

Location Matters

- Inflection point
- Mid-span

Slab-to-Slab Connectors

- Concrete anchors
- Mechanical couplers


- A temporary leave-out
- Post-tensioned separately
- Allows for volume change
- A complete break in the structure
- 3-ft to 4-ft wide, or wider
- Poured back later
- 28-days to 120-days, or more
- Used in PT and RC

- Formwork left in place or reformed
- ACI lap splice
- Provides load transfer
- Provides diaphragm continuity
- Provides ACI integrity
- Safety hazard
- Critical path
- Delays other trades
- Most expensive concrete

THE MAIN ISSUE

Volume change

- Shrinkage
- Temperature
- Elastic shortening PT
- Creep PT

Restraint to shortening (RTS)

ACI 209 – CREEP AND SHRINKAGE IN CONCRETE

- 8-in PT slab
- 100-ft long
- No restraint
- RH = 75%
- P/A = 200 psi
- f'c = 3,000 psi (release)
- f'c = 5,000 psi
- Temperature change = 70 F

Estimated Long-Term Shortening (25-yrs)

- ES (Elastic Shortening) = 0.07-in
- SH (Shrinkage shortening) = 0.5-in
- CR (Creep Shortening) = 0.11-in
- T (Temperature shortening) = 0.5-in
- Total without T = 0.68-in
- Total with T = 1.18-in

Estimated Short-Term Shortening (28-days)

- 40% of long-term
- Total without T = 0.26-in
- Total with T = 0.46-in

VOLUME CHANGE – PTI DC20.2-22 4.1.1 – Pour Strips

The separation allows each region to independently undergo its shortening. After a time period ranging anywhere from 14 to 60 days, the gap between the two post-tensioned slab regions (the pour strip) is closed by placing non-shrink concrete.

Time to casting of pour strip

The time necessary to keep a pour strip open is determined by the extent of shortening deemed necessary before the two slab regions are tied together. Many practicing engineers use 0.25 in. (6 mm) as the hypothetical displacement which can be accommodated in a post-tensioned structure without significant impairment to its serviceability. For example, the casting of the pour strip concrete should be placed at a time when the remaining calculated displacement of the slabs at each side of the pour strip is 0.25 in. (6 mm). Obviously, once the two slab regions are tied through the pour strip, the deferred displacement cannot take place. It is recognized that this is an empirical procedure backed by the satisfactory performance of pour strips in place. Section 3.2.1 discusses a simple method for estimating the closing time of a pour strip and Section 6 presents a detailed approach.

VOLUME CHANGE – PTI DC20.2-22

RESTRAINT TO SHORTENING (RTS)

- Stiff elements
- Building geometry

It gets complicated!

FORMING, SHORING, RESHORING, AND BACKSHORING

RESHORES – ACI 347

• Shores placed snugly under a stripped concrete slab or other structural member after the original forms and shores have been removed from a full bay, requiring the new slab or structural member to deflect and support its own weight and existing construction loads to be applied before installation of reshores.

BACKSHORES – ACI 347

 Shores left in place or shores placed snugly under a concrete slab or structural member after the original formwork and shores have been removed from a small area, without allowing the entire slab or member to deflect or support its self-weight and construction loads.

RESHORING VS. BACKSHORING

VS.

RESHORING VS. BACKSHORING

LOCATION MATTERS – PTI DC20.2-22

4.1.1 – Pour Strips: Location

Location within a span and shoring

Between two adjacent supports, for regular conditions, the preferred location of a pour strip within a span is at midspan. For long spans, an alternate approach is to place the pour strip at the quarter span where the moments are typically small. It is important to carefully review predicted deflection at the end of the two cantilevers at the time the closure will be poured to ensure the closure is level and flat. The cumulative shoring requirements at all pour strip bays should be carefully reviewed. Other considerations, however, may dictate the location of the pour strip.

INFLECTION POINT

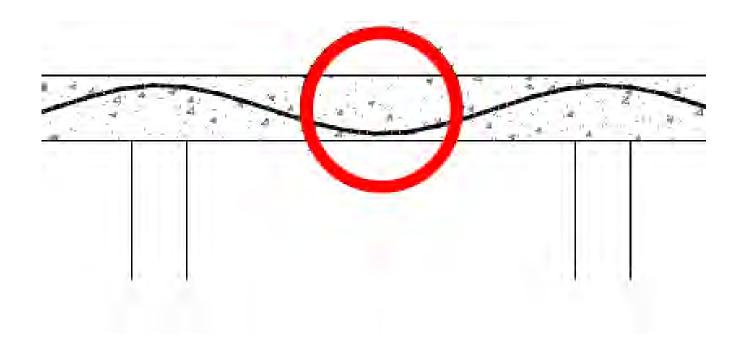
- Low bending moment
- High shear
- Tendons at mid depth
- PT/rebar most economical
- Not self-supporting
- Cannot be fully released
- Requires backshores
- Short cantilever lifts up

INFLECTION POINT

UP

INFLECTION POINT

BACKSHORES – ACI 347


 Shores left in place or shores placed snugly under a concrete slab or structural member after the original formwork and shores have been removed from a small area, without allowing the entire slab or member to deflect or support its self-weight and construction loads.

MID-SPAN – NOT SELF-SUPPORTING

- High bending moment
- Low shear
- Tendons at bottom
- PT/rebar less economical
- Slabs cannot self-support
- Cannot be fully released
- Requires backshores

MID-SPAN – NOT SELF-SUPPORTING

BACKSHORES – ACI 347

 Shores left in place or shores placed snugly under a concrete slab or structural member after the original formwork and shores have been removed from a small area, without allowing the entire slab or member to deflect or support its self-weight and construction loads.

MID-SPAN – SELF-SUPPORTING

- High bending moment
- Low shear
- Tendons at bottom
- Added PT higher stress
- PT/rebar least economical
- Slabs can self-support
- Slabs can be fully released
- No backshores

MID-SPAN – SELF-SUPPORTING

RESHORES – ACI 347

 Shores placed snugly under a stripped concrete slab or other structural member after the original forms and shores have been removed from a full bay, requiring the new slab or structural member to deflect and support its own weight and existing construction loads to be applied before installation of reshores.

SLAB-TO-SLAB CONNECTORS

Embedded Release Devices (PTI DC20.2-22)

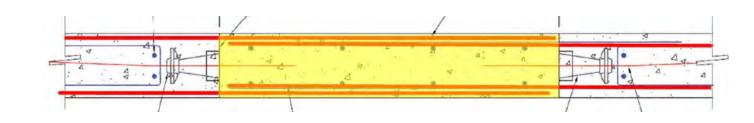
- Concrete anchors
- Mechanical splices PS=Ø[®]

POUR STRIP LAP SPLICE

- ACI-permitted splice
- Meets ACI integrity
- Shear friction
- Continuous rebar

- Yielding
- Ductility
- Fixed
- Fire rated

CONCRETE ANCHORS



CONCRETE ANCHORS

- Met local shear
- Did not meet local moment
- Did not transfer forces like a lap splice
- Did not meet ACI integrity
- Rebar not continuous
- Permanent hinge expansion joint
- Required redesign of the slab and lateral sy:
- Uses epoxy grout No fire rating
- Not ICC-approved
- Not an ACI-permitted splice
- Needed additional confinement steel

(ii) Pullout

- Not ACI-permitted splice
- Does not meet ACI integrity
- No shear friction
- No continuous rebar
- No yielding
- No ductility
- Hinge
- Not fire rated

- ACI-permitted splice
- Meets ACI integrity
- Shear friction
- Continuous rebar
- Yielding
- Ductility
- Fixed
- Fire rated

CONCRETE ANCHORS – COULD THEY WORK?

- Non seismic
- Non high wind
- Don't need ACI integrity
- Don't need ICC
- Don't need continuous rebar
- Don't need yielding
- Don't need ductility

- Hinge OK
- Don't need tension like rebar splice
- Two separate lateral systems
- Cantilever column
- Shear only
- Don't need a fire rating
 - See PTI DC20.2-22, 4.4 Embedded Release Devices

ACI 318 REVIEW – NOT A PERMITTED SPLICE

318 Sub D – Members

ACI 318 Spring Convention Quebec City Convention Center Quebec City

Tuesday, March 26, 2019

2104 B

1:30 PM – 6:00 PM

Minutes

4. Lockable Dowels

Dan Mullins provided a short presentation on the practical code implications of using "lockable dowels" for pour strips. Dan made the argument that although lockable dowels may meet localized shear and moment force transfer requirements, they do not meet continuity requirements. The committee agreed with Dan's assessment, and the committee indicated that this topic should be considered for new business in the next code cycle.

ACI 318-19: STRUCTURAL INTEGRITY

structural integrity—ability of a structure through strength, redundancy, ductility, and detailing of reinforcement to redistribute stresses and maintain overall stability if localized damage or significant overstress occurs.

Table 4.10.2.1—Minimum requirements for					
structural integrity					
Member type	Section				
Nonprestressed one-way cast-in-place slabs	7.7.7				
Nonprestressed two-way slabs	8.7.4.2				
Prestressed two-way slabs	<mark>8.7.5.6</mark>				
Nonprestressed two-way joist systems	8.8.1.6				
Cast-in-place beam	<mark>9.7.7</mark>				
Nonprestressed one-way joist system	<mark>9.8.1.6</mark>				
Precast joints and connections	16.2.1.8				

ACI 318-19: DIAPHRAGMS – SPLICES

12.7.3.1 Except for slabs-on-ground, diaphragms that are part of floor or roof construction shall satisfy reinforcement detailing of one-way slabs in accordance with 7.7 or two-way slabs in accordance with 8.7, as applicable.

12.7.1.3 Splices of deformed reinforcement shall be in accordance with 25.5.

SPLICES – WHAT DOES ACI PERMIT?

- Lap splice
- End-bearing splice
- Mechanical splice
- Welded splice

ACI 318-19: MECHANICAL SPLICES

18.2.7.1 Mechanical splices shall be classified as (a) or (b):
(a) Type 1 – Mechanical splice conforming to 25.5.7
(b) Type 2 – Mechanical splice conforming to 25.5.7 and capable of developing the specified tensile strength of the spliced bars

25.5.7.1 A mechanical or welded splice shall develop in tension or compression, as required, at least $1.25f_v$ of the bar.

R25.5.7.1 To ensure sufficient strength in splices so that yielding can be achieved in a member and thus brittle failure avoided, the 25 percent increase above the specified yield strength was selected as both an adequate minimum for safety and a practicable maximum for economy.

MECHANICAL SPLICES

- Coupler for Thread-Deformed Bar
- Upset Straight Thread Coupler
- Non-Upset Straight Thread Coupler
- Cold-Swaged Threaded Coupler
- Taper-Threaded Coupler
- Straight Threaded Coupler with Upset Rebar Ends Coupling Sleeve with Shear Bolt/Wedge
- Grout-Filled Coupling Sleeve
- Combo Grout-Filled/Threaded Sleeve

- Steel-Filled Coupling Sleeve
- Cold-Swaged Coupling Sleeve
- Shear Screw Coupling Sleeve
- Extruded Coupling Sleeve
- Coupling Sleeve with Double Wedge
- Dowel Bar Mechanical Splice
- Compression-Only Mechanical Splices

PS=Ø[®] - MECHANICAL SPLICE

Eliminates pour strips, wall leave-outs, and expansion joints while maintaining structural integrity and allowing for volume change. Using proven coupler technologies recognized worldwide, featuring a thread on one end and a grout-filled sleeve on the other. The system is an ACI 318 code compliant full-tension mechanical Type 1 and Type 2 rebar splice, is ICC approved and made in the USA.

HOW IT WORKS - INFLECTION POINT

- Low bending moment
- High shear
- Tendons at mid-depth
- PT, rebar most economical
- Self-supporting
- No Backshoring
- PS=Ø[®] at mid-depth

STEP 1

STEP 3

STEP 2

f'c

Avc

da

le

φV_n

lbs

Tech Sales, LLC 192 W 9th St St Paul, MN 55102

5,243

2,761

Project: 121 E Wilson Engineer: JP Date: 11/9/2023 Page: 2/2

SHEAR CAPACITY BASED ON CONCRETE BREAK OUT ACI 318-19 Chapter 17 13 14 9 10.375 11 t slab (in) 8 3,000 3,000 3,000 psi 3,000 3,000 3,000 0.7 0.7 0.7 0.7 0.7 0.7 $\alpha_a = 1.0 \alpha$ 18 18 18 18 18 18 spacing (in) (in) 5.1875 5.5 6.5 4.5 C_{a1} in² 72 220.5 91.125 121.095703 136.125 190.125 Avco in² 189 72 91.125 121.095703 136.125 175.5 bar size # 0.875 0.875 0.875 0.875 0.875 0.875 in 6.75 in 6 lbs 6423 9008 10068 4217 5152 7012 V_{b1} IV_{b2} lbs 9130 3944 4706 5824 6358 8169 Wed. V 0.96 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 Ψc.V $\Psi_{h,v} = (1.5 c_{a1}/h_a)^{0.5}$ 1.00 1.00 1.00 1.00 1.00 1.00

3.294

4,077

4,451

5,157

Project : <u>121 E Wilson</u> Date : <u>11/9/2023</u> Engineer : JP

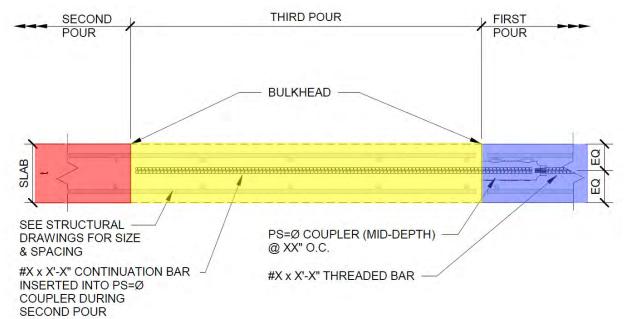
Shear Friction Design Method ACI 318-19, Sec 22.9						
A	øV,	= oA _{vt} f _y (µ s	in α, + cos α	•)	[22.9.4.3]	
Assumed crack		$\phi V_n = \phi \mu A_{vf} f_y$ where $\alpha_f = 9$			[22,9,4]	
and shear plane			φ =	0.75	[T 21.2.1]	
Applied shear	George					
	Coeff. of	friction, $\mu = Ag$		entionally rougher		
V.			μ=	0.6 λ	[T22.9.4.2]	
Shear friction reinforceme	n nt A	Concrete T	Type, λ = Nor	moluciaht		
	nd triff	Controlot	λ=	1	[T19.2.4.1]	
a			~=		[110.2.4.1]	
			fy =	60 ksi		
1 0			$\alpha_{t} =$	90 °		
1			bar #	7		
				0.60 in ²		
		n, number (1		
			$\Sigma A_{\rm vf} =$	0.6 in ²		
		ά½.⇒	16.20 kips	/ bars		
		Total & Vn =				
Shear Plan, Limit Based on Con	crete :					
f'c = 6,000 psi						
t= 11 in						
Spacing, L = 18 in						
$Ac = tL = 198 in^2$	Ac = Area of concr	ete section resis	ting shear tra	nsfer		
If $\mu = 1.4$ or $1 \phi \lor n_2 = \phi$	min (0.2 fc Ac. //	180+0.08 f.c) Ac	1600 Ac)	85.5	kips	
If $\mu = 0.6$ or $0.7 \phi \forall n_2 = \phi$	u min (0.2 fc Ac, 8	00 Ac)	, ,,		kips	
	φ ∨ _{n2} =	71.28 kip	s			
	Use ø Vn =	16.20 kip	IS			

VS.

- ACI-permitted splice
- Meets ACI integrity
- Shear friction
- Continuous rebar
- Yielding
- Ductility
- Fixed
- Fire rated

- ACI-permitted splice
- Meets ACI integrity
- Shear friction
- Continuous rebar
- Yielding
- Ductility
- Fixed
- Fire rated

- HOW IT WORKS
- 1. Slab to Slab
- 2. Temporary Stressing Strip
- 3. Slab to Wall
- 4. Sequencing
- 5. Expansion Joints


SLAB TO SLAB

TEMPORARY STRESSING STRIP

INFLECTION POINT

SLAB TO WALL

SEQUENCING

BEAMS: PT and RC

EXPANSION JOINTS

WHAT'S OFFERED

- Full tension mechanical splice
 - Type 1 & Type 2
 - #6 (Gr.60)
 - #7(Gr.60)
 - #8(Gr.60, Gr.80)
 - Epoxy coated
- Movement
 - Longitudinal
 - Transverse

WHAT'S INCLUDED

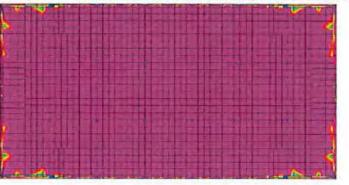
- Full package
 - Mechanical coupler
 - Torque wrench
 - Grout tubes with caps
 - Bond breaker
 - Sprayer for bond breaker
 - Non-shrink grout
- Full support
 - Technical
 - Shop drawings
 - On-site assistance

25 ft x 30 ft bays, 8 in. slab, 12 in. walls

Fully Connected at Final

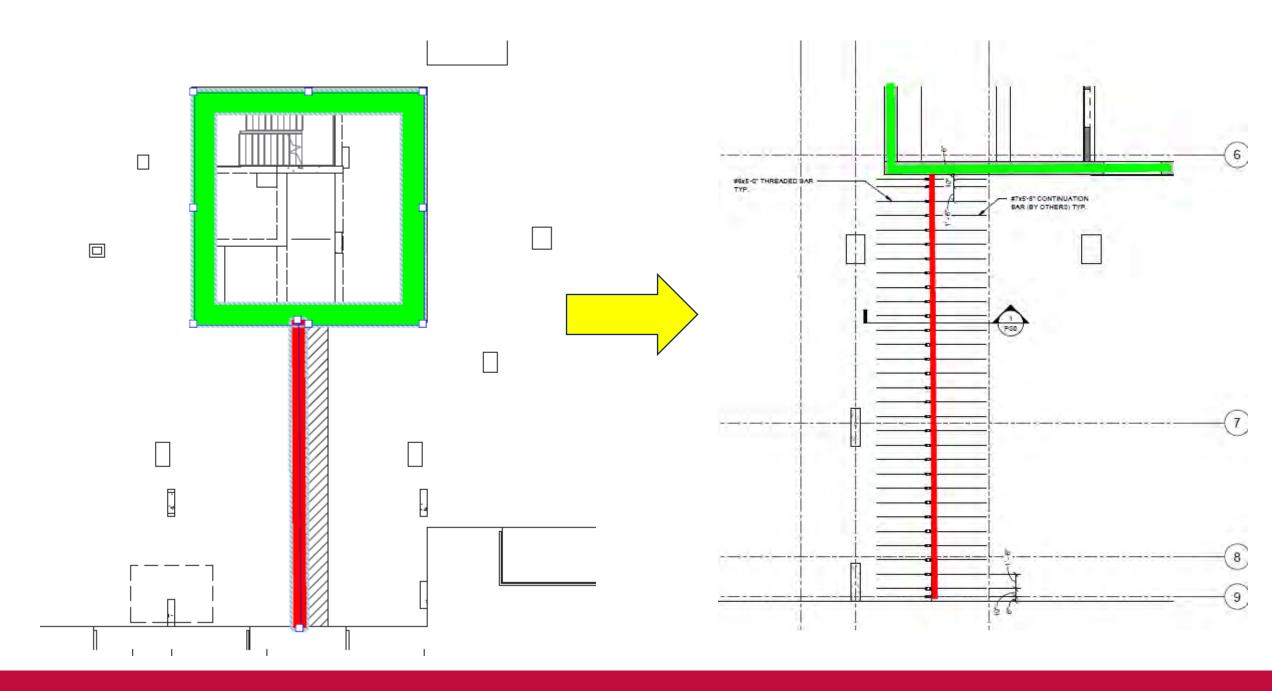
25 ft x 30 ft bays, 8 in. slab, 12 in. walls

Fully Connected at 30 days



Fully Connected at Final

Final


MODEL 2B - UNFAVORABLE WALL POSITIONS - WALL RELEASES

SALT LAKE CITY HOTEL

PTI DC20.2-22: 4 – CRACK MITIGATION DETAILS

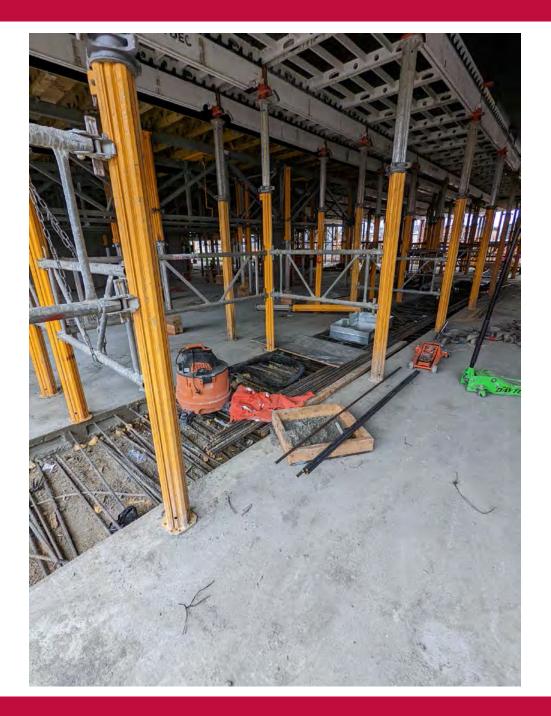
PTI DC20.2-22: 4 – CRACK MITIGATION DETAILS

PTI DC20.2-22: 4 – CRACK MITIGATION DETAILS

THE SMITH – BOSTON, MA

- 12-Story two-way PT
- Mid-span not self-supporting
- 45-day leave-out
- 2-Month schedule delay
- \$1M liquidated damages

- PS=Ø[®] last 6 floors
- Savings
 - \$160K/floor
 - 2-Months


LEVELS 1-6

LEVELS 7-12

Cost: \$150 - \$200/SF

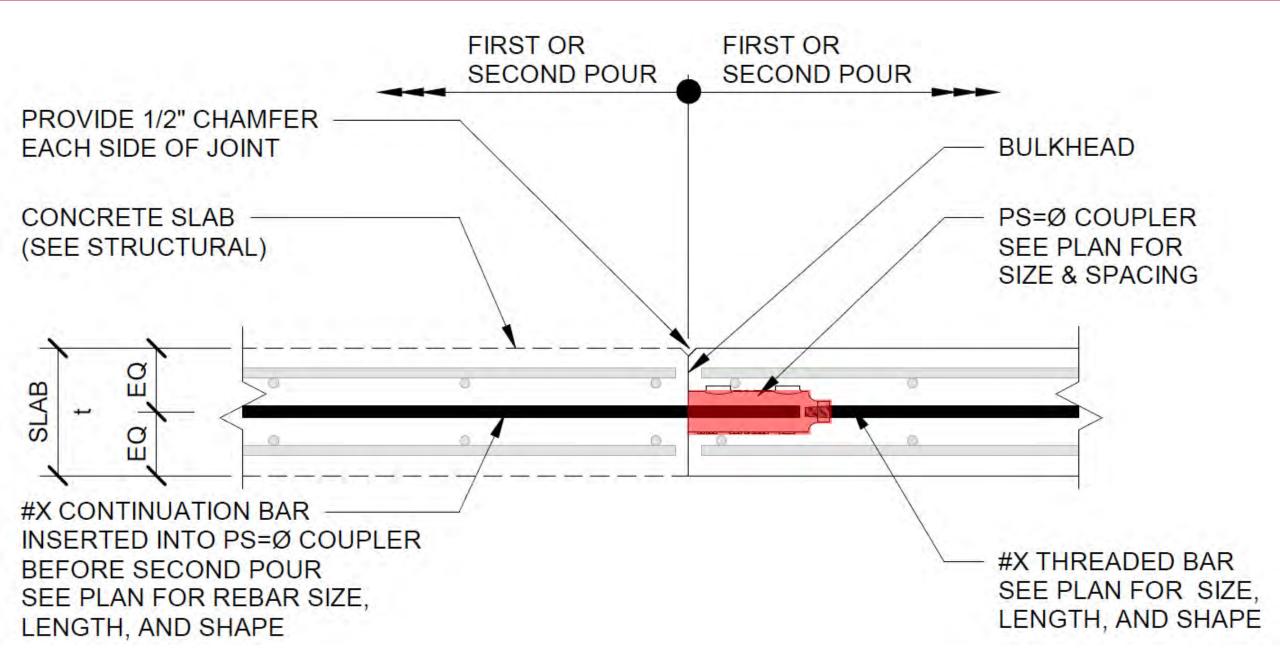
- Mid-span not self-supporting
- 2-Month schedule delay
- \$1M liquidated damages

- 1/5-span self-supporting
- 2-Month schedule saving
- \$1M saved

MILL CREEK CITY HALL – MILL CREEK, UT

- 6-Levels two-way PT
- Inflection point
- 56-day leave-out
- Wall releases

- Savings
 - 2-Months
 - \$1.2M
 - \$200K/floor



GC

0

HISTORICAL DATA - SAVINGS

Schedule Savings Range

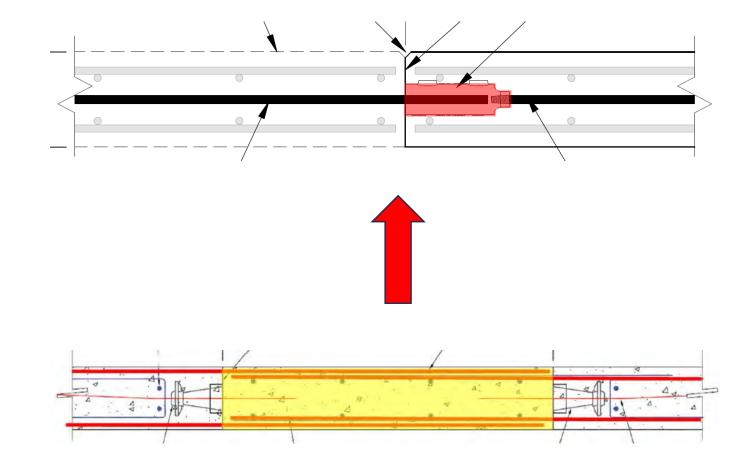
• 2 to 4-Months

Cost Savings Range

• \$100k/floor to \$350k/floor

INCREASE PRODUCTIVITY

REDUCE COSTS


ACCELERATE CONSTRUCTION

IMPROVE SAFETY

HIGHER QUALITY CONCRETE

Questions?

Jared M. Reigstad, P.E., P.Eng. Vice President

jmreigstad@pourstrip0.com

651-248-0593

