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all
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Diversity in details




Always at steel/concrete interface
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Interesting in many contexts U

e Static loads

e Seismic loads

e Interactions with frame
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Challenging to navigate

e Static loads
e Seismic loads

e Interactions with frame
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State of the art— Exposed base plate connections
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Design Guide One

Focusing on one configuration
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Design Guide One
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Uniaxial bending with axial
compression

Two rows of anchors
resisting bending
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The mechanics

Simple in principle
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The mechanics

Simple in principle
* Bearing in footing

e Tension in rods




The mechanics

« Multiple distributions satisfy
equilibrium

* True distributions depend on
Interplay of plate, rod, and
flexibility and nonlinearity

e Determining these is non
trivial
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The mechanics

« Multiple distributions satisfy
equilibrium

* True distributions depend on
Interplay of plate, rod, and
flexibility and nonlinearity

e Determining these is non
trivial




Design Guide One approach
Culmination and integration of @
work by researchers

 DeWolf and Sarisley
(1978,80,82)

 Thambirathamand
Paramasivam(1986)

e Drake and Elkin (1999)




Design Guide One approach

STEP 1

» Idealize distribution based on
bearing strength of footing

*High eccentricity condition



Design Guide One approach

STEP 1

» |dealize distribution based on
bearing strength of footing

¢ ’ lzear/ng (¢: 0'65)

e Two equilibrium equations
Pand M

e Two unknowns
Yand T




Design Guide One approach
P, M

STEP 2 — Given Y and T, evaluate limit states @

» Base plate yielding on compression
side

« Base plate yielding on tension side

* Anchor rod yielding

» Bearing failure of footing (implicit) B i




Design Guide One approach

STEP 2 — Given Y and T, evaluate limit states

« Base plate yielding on compression
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Design Guide One approach

STEP 2 — Given Y and T, evaluate limit states

« Base plate yielding on compression
side

comp < ¢ I\/Iplate (¢ = 0-9)
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Design Guide One approach

STEP 2 — Given Y and T, evaluate limit states ﬁb

« Base plate yielding on compression
side

I\/Itens < ¢ I\/Iplate (¢: 0-9)

e e e e




Design Guide One approach

STEP 2 — Given Y and T, evaluate limit states

» Base plate yielding on compression
side

Ivltens < ¢ I\/Iplate (¢: 0-9)

e e e e

Y = A




Design Guide One approach

STEP 2 — Given Y and T, evaluate limit states

* Yielding or failure of the anchors
T< ¢ Trod (¢: 0-9)
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STEP 2 — Given Y and T, evaluate limit states ﬂh

* Yielding or failure of the anchors
T< ¢ Trod (¢: 0-9)




Design Guide One approach

STEP 2 — Given Y and T, evaluate limit states @

e Bearing failure of footing
(implicit check)

« Bearing stress over plate
footprint cannot accommodate
compression
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dimensions




Design checks

STEP 2 — Given Y and T, evaluate limit states

 Base plate yielding on compression
side

» Base plate yielding on tension side
* Anchor rod yielding

» Bearing failure of footing (implicit)



Part 1— Exposed Base Plate Connections

Exposed Design Guide One Approach
Base Plates
~
Prevailing
understanding Static/Non -Seismic Loading
and design . : : :
& methods ) Analysis of Design Guide One approach
— _
N ~ N
ew _ :
Developments Seismic Loading
« Strong vs Weak Base Design

* Ductile base plate details




Research in the last 15 years

 Many Experiments (34
large scale tests at
UCD)

e Finite element and line
based simulations

e Monte-Carlo based
Reliability analysis




Strength estimation based on Design Guide One
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Strength estimation based on Design Guide One
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Strength estimation based on Design Guide One
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Plate bending on compression side not consequential

Moment (kip-in)

Drift (%) 9
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Plate bending on compression side not consequential
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Plate bending on compression side not consequential
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Plate bending on tension side
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e Strength increase due to
membrane action



Plate bending on tension side
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Plate bending on tension side
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Summary— Design Guide One

« Fairly accurate for strength characterization
« Conservative when platebending controls

e Scope does not include
¢ Seismic connections
 Embedded connections
* Modeling
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Seismic considerations- exposed base plates

ANSI/AISC 341-16
An American National Standard

Seismic Provisions
for Structural Steel Buildings

July 12, 2016

Supersedes the Seismic Provisions for Structural Steel Buildings
dated June 22, 2010, and all previous versions

Approved by the AISC Committee on Specifications
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Seismic considerations- exposed base plates

ANSI/AISC 341-16
An American National Standard

Seismic Provisions
for Structural Steel Buildings

July 12, 2016

Supersedes the Seismic Provisions for Structural Steel Buildings
dated June 22, 2010, and all previous versions

Approved by the AISC Committee on Specifications

Broad principles
and philosophy
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Seismic considerations- exposed base plates

ANSIAISC 341-16
An American National Standard

Seisn

6c. Required Flexural Strength
for Structural S 4 8

Where column bases are designed as moment connections to the foundation, the
required flexural strength of column bases that are designated as part of the SFRS,
Supersedes the Seismic Pro including their attachment to the foundation, shall be the summation of the required

dated Jun: . .
connection strengths of the steel elements that are connected to the column base as

Approved by the .
follows:

(a) For diagonal braces, the required flexural strength shall be at least equal to the
required flexural strength of diagonal brace connections.

(b) For columns, the required flexural strength shall be at least equal to the lesser of
the following:

(1) I.IR}\F\.Z/QI\. of the column; or

B road prl nCI pIeS (2) The moment calculated using the overstrength seismic load, provided that
: a ductile limit state in either the column base or the foundation controls the
and philosophy Sesion.




Two ways to design seismic base connections

Strong base
design

Required Flexural Strength

Where column bases are designed as moment connections to the foundation, the
required flexural strength of column bases that are designated as part of the SFRS,
including their attachment to the foundation, shall be the summation of the required
connection strengths of the steel elements that are connected to the column base as
follows:

(a) For diagonal braces, the required flexural strength shall be at least equal to the
required flexural strength of diagonal brace connections.

(b) For columns, the required flexural strength shall be at least equal to the lesser of
the following:

(1) L.IRyF,Z]a of the column; or

(2) The moment calculated using the overstrength seismic load, provided that
a ductile limit state in either the column base or the foundation controls the

design.




Strong base design

e Direct application of
Design Guide One

e Large rods, thick plate




Two ways to design seismic base connections

6c.  Required Flexural Strength

Where column bases are designed as moment connections to the foundation, the

Weak base required flexural strength of column bases that are designated as part of the SFRS,
including their attachment to the foundation, shall be the summation of the required

deS|g n USI ng QO connection strengths of the steel elements that are connected to the column base as

follows:

IO a‘ d S (a) For diagonal braces, the required flexural strength shall be at least equal to the
required flexural strength of diagonal brace connections.

(b) For columns, the required flexural strength shall be at least equal to the lesser of
the following:

(1) L.IRyF,Z]a of the column; or

(2) The moment calculated using the overstrength seismic load, provided that
a ductile limit state in either the column base or the foundation controls the

design.




Weak base design
« Weak base design
e Cheaper connection
* Requires ductility
* Limited specific

guidance on how to
achieve this




Inherent ductility of exposed base connections

Great inherent ductility (rotation >5%)

ent (Kip-in)

Gomez et al. (2010), Kanvinde et al. (2015), Trautner et al. (2017),
Astaneh et al. (1992), Fahmy et al. (1999), Burda & Itani (1999), Lee et al. (2008) and Wald et

al. (2020)



How to achieve weak base design?

 Develop understanding of base rotation
demands

 Engineer details that can meet these demands,
with confidence

e Demonstrate effectiveness of these details



How to achieve weak base design?

Develop understanding of base rotation demands
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How to achieve weak base design?

Rotation in the range of 45% provides great
performance
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How to achieve weak base design?

Weak-base design is well within reach

3x6.1m

W 24462
305m
"—" W 2157 W 24+62
3 W 30<108]
3|
W 30108
o
el
g W 30108
e 3|
[~ / E W 30108
g9 S l
/ concrete foundation - W 33141
4-story frame
/ W 33141
Stegl Momgnl Frémes W 24484 W 33141
; : : 3
3 L 2484 W 33441
‘ 3x6.1m ‘ g
s
Plan view Jlwzzes W 33441
(all frames) 8
3 Lw 2704 w 33441
=|
w2168 W 304116 W 33169
3 T E
3 L 2ax8a / 3 Lw.3s0a16 W 33169
B 7 3| =
0 woroa A ° wsoms|] W 33169
| Y 3l Lw soaie / W 33469
3| 3 7
i i kY A
W 2794 ; W 30132 3 W 33169
3l |wsome| |5 ¢ & |Lwsoasa ||z W 33169
3| =, =| =
0 w 3016 / w 30132 . W 33469
g o g v
3| |wsoaos| | N 3 Lwsoaza | W 33169
=| = B =

Goncrete foundation

8-story frame

Concrete foundation
12-story frame

concrete foundation

20-story frame

gravity loads

truss elements

bilinear hysteretic

springs at RBS locations

//’/—‘— ,’/”’—~\\\\\
~e_ - - - ,
--- --- !
N =N !
@) S \
) \
—® o Ho—
e N
Q

/A two springs
in series

P-Delta columns

/‘g‘\
)

T




Engineering such a connection

Which ductile mode to use?




Ductile base connections through rod elongation

oteel
Column

"/ Anchor
Chanr
Stretch
Length Grout Pad

| -

Concrete
Footing

Soules et al (2016)

Good performance
observed under high
shaking

Attributed to stretch
length



Ductile base connections through rod elongation

oteel
Column

“/ Anchor
Chanr
Stretch
Length Grout Pad

I//

Concrete
Footing

Soules et al (2016)

Good performance
observed under high
shaking

Attributed to stretch
length



Achieving ductility in base connections

Consensus around rod elongation vs base plate yielding




Achieving ductility in base connections

Consensus around rod elongation vs base plate yielding




Stretchlength requires additional fabrication

Stretch
Length

I

b

ateel

/" Column

Anchor
Chair

Grout Pad

Concrete
Footing



A new “reliably ductile” detail — AISC/Pankow Project

Consultation with design
engineers, fabricators

Focus on convenience of
fabrication

Minimal changes to existing
practice

High confidence in ductile
response



The Upset Thread Detall
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Milled down “upset”
threads
 Enhance ductility
 Define yielding
zone
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The Upset Thread Detall

Milled down “upset”
threads
« Enhance ductility
e Define yielding
zone
Debonding tape
e Prevents rod
catching
e Similar to BRB
Shear Key
e Protects rods from
shear
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Schematic of detall

Column

Upset Thread (UT)
Anchor Rod

Concrete
Foundation

Polyethylene

Debonding
Tape \’



Large scale tests and performance

Anchor Anchor Axial Load

Test # | Plate size
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Large scale tests and performance

Anchor Anchor Axial Load

Test # | Plate size

Grade Dia [in] [kip]
0.75 120 (C)
55
30 x 30 120 (C)
x2 1.00 120 (C)
105
0
o 1 ATGSAC Protocol
E%“:"; AAAAA AAAAARAVTR nﬁHA!IiHHI hhhhh MMMMMMMM IHF app||6d fwice
5 o 'RAA AR VWWVVVYYY "’"”WWWUU vYvwyw vvvvv‘ﬂ,fﬂrquwvuwlnm o
E S I I followed by 6.5%
i — | E— cycles

Cyele No.



Results

All specimens survived back to back applications of SAC protocol (to 5%)
and additional cycles to 6.5% with no rod fracture



Base Momenl (kip.in)

se Moment (kip.in)

DDDDDD

Base Moment (kip.in)

m)

Buase Moment (kip.1

Predominant
damage — grout
crushing




Generalization using material testing, FEM, and line
based simulations

Elastic Beam
Column
Elastic /
Beam _
Column
oncrete. u
ss Element

Simulation of Necking, Ultra Low Cycle Fatigue, Bending



Generalization using material testing, FEM, and line
based simulations

Elastic Beam
Column
Elastic /
ea
olumn

No Damage

~60 parametric simulations with variations in plate and rod dimensions,
rod materials, loading histories etc.



Parametric Simulation- findings

. Behavior appears to hold across a large number of configurations
. Ratio of stretch length to plate length is key

Lstretch >0.5 XL

I—stretch <0.5XL

plate plate
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. Behavior appears to hold across a large number of configurations
. Ratio of stretch length to plate length is key
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I—stretch <0.5XL

plate plate




NLTHA Resuits and summary

bilinear hysteretic

/ springs at RBS locations / truss elements

panel zone

hysteretic springs
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P-Delta columns

panel zone \ bilinear hysteretic

model springs at column
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plate connection model
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Use validated method to examine failure




NLTHA Results and summary

bilinear hysteretic

/ springs at RBS locations

panel zone

hysteretic springs

=5 a . ® 6 |
panel zone | \ bilinear hysteretic
model springs at column
ends

© elastic beam/colymn ® ® /

elements

N A

/ truss elements
. /
®

i

exposed column base
plate connection model

e

P-Delta columns

Use validated method to examine failure

 Upset Thread detail withlggn,> 0.5 X Lo
« Design forQ, or even lower forces

Excellent
performance
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Embedded

Bases

Prevailing
understanding
and design
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Developments

. J

| Developing column capacity is
Photo credit: Josh Buckholt and ]
Mahmoud Maamouri, CSD Engineers Challenglng
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Part 2—- Embedded Base Connections

Photo credit:Nabih Youssef, Resistance through
SimpsonGumpertz and Heger :
concrete bearing



Overview

Steel Design Guide

Base Plate and
Anchor Rod Design

®

Embedded

Bases

SEISMIC

DESIGN
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Prevailing
understanding
and design MANUAL
methods e
\. J A Nt S AMERICAN INSTITUTI
p . STEEL CONSTRUCTION
Seismic Provisions I DTN
New for Structural Steel Buildings
Developments e
L ) e 22000, s v




Takeaways from Design Documents
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Takeaways from Design Documents

 AISC 341 and Design
Guide One identify
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Takeaways from Design Documents

« AISC 341 and Design 3 5
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Research in the last 15 years

10 Experiments

e Finite element
simulations

e Strength and
stiffness models




Various variables investigated

« Embedment depth

» Axial compression

e Column size N 8 o o 111 W

: Lo | IR
* Reinforcement . |
S~ ———
Stirrups Zones Vertical
. or Tests #4 & 5 Re Stirmups
Jor Tests #4 and §
U-Bar Hairpin 7 each side of the column
#4 bars (2 branches) (See Stirvups Detail)
- 2rows /
vertical =7
_ #4 Stirmp b
ar ectio




Coupling beam approach applied to test data

2
| B8 Generic Detail (No Reinforcement)
1.8 A w/ Horizontal Reinforcement (No Stirrups)
16k @ w/ Horizontal Reinforcement (w/ Stirrups)
14} @ 8
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Embedded base connections are NOT coupling beams
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Embedded base connections are NOT coupling beams

o Effect of axial force

e Additional confinement
around column flanges

e Fixity and strength due to
vertical bearing




New model for embedded base connections

« Horizontal bearing against
column flanges

« Vertical bearing against
embedded plate

e Consideration of interactions
and failure modes




Horizontal Bearing and panel shear— similar to

coupling beams _
Bearing A




Vertical bearing




Strength Model- considering both mechanisms

1 » |dealization of stress blocks
 Consideration of faillure modes
In each direction
ﬂﬁ%\  Consideration of reinforcement

T patterns



Strength Model

Consideration of faillure modes in each direction




Improved models for embedded bases

2
1.8 B  Generic Detail (No Reinforcement)
A w/ Horizontal Reinforcement (No Stirrups)
16 @ w/ Horizontal Reinforcement (w/ Stirrups)
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S 08¢
0.6
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(b) Proposed Model
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Rotational stiffness of embedded bases
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Rotational stiffness of embedded bases

3000

2000

M base (kNm)

1000 -

0~ 0.01 0.02 0.03 o

Significant rotation! Opase (radians)



Summary— embedded base connections

« Knowledge almost entirely new

 Existing methods do not fully capture complexity and
mechanisms

« New test data has led to improved methods

 Rotational flexibility is an issue
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A look to the future

Part 3

A look to the

future

“Resolved”
iIssues

f * Minor modifications to strength model
» Ductile details for weak base design
* Reliability analysis
» Biaxial bending
* Anchorages

r

Ongoing work

Unresolved
issues

~

» Shear transfer
» Alternate anchor rod patterns
* Modeling tools
» Strength models for embedded details

k « Effect of slab overtopping

~

)




Modifications to strength models to reduce
conservatism

Drift (%)




Ductile details for weak base design

Column

Upset Thread (UT)
Anchor Rod

Grout
Pad

Concrete
Foundation

:
Polyethylene E
Debonding \: Shear
Tape . Key
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Embedded bases- new strength models




Reliability analysis

\4

Uncertain
component
demands

Y ey T< ¢ Trod

Additional step of calculating sub
component forces




Biaxial bending and alternate rod patterns




Shear transfer




Strength of anchorages

Differences between concrete and steel column bases

333




Models for base flexibility — exposed and embedded
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Kanvinde, A.M., Grilli, D.A., and Zareian, F (2012). “Rotational Stiffness of Exposed Column Base Connections — Experiments
and Analytical Models,” Journal of Structural Engineering, ASCE, 138(5), 549-560.



Blockoutconnections and overtopping slab




Blockoutconnections and overtopping slab




Blockoutconnections and overtopping slab

Work done at BYU (Paul Richards) and UC Davis






Potential proposals

A look to the
future

* New (3) Edition of Design
Guide One (~2024) —in

progress
“Resolved”
B issues e AISC 341 — Next code
- ’ cycle
: Ongoing work 1

—  Unresolved e Seismic DeSign Manual

issues
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AISC Design Guide One 34 Ed

Amit Kanvinde, Mahmoud Maamouri, Josh Buckholt

New chapter on embedded connections

Detailed consideration of seismic issues (including weak
base design)

Configurations not addressed currently (rod patterns,
biaxial bending)

Stiffness models

Guidelines for computer analysis

Alternate methods of design to remove conservatisms
Web tools for strength and stiffness models!



A look to the future
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Braced frame base plates

A look to the

future

“Resolved”
issues

Photo credit: Rick Drake (2003)



Overall foundation response

A IOOk to the Reinforcing Embedded beam—
bar moment connected to
fUtu e Column / Concrete column
\._»\_. grade beam ‘ Column
s w Base o N ] R = ES—— Base
. R%Z%ng e B =Ty
Grout — 7% _ ":Il‘__‘,;,"f -M\;\kGrout
\ J Anchor rod WAV TN Anchor rod
Concrete Concrete
i : ) foundation foundation
Ongoing work
Unresolved Grade beams
ISSUES
\ )




Overall foundation response
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Overall foundation response
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Base frame interactions

%0 4% a
Spring (z-axis):
~—  Shear tab + Girders + Column above

Spring (y-axis):
Girders

A look to the

future

Spring (x-axis):
Shear tab + Girders
f N
| “Resolved”
iIssues i
Emhm: g;ruxrfl::Base i
\, J FE model boundary conditi;;;
4 N\
Ongoing work
Unresolved
issues
\_ y, Actual

Inamasu, I., Kanvinde, A.M., and Lignos D., (2019). “Seismic Stability of Wide Flange Steel Columns Interacting with Embedded Column Base
Connections,” Journal of Structural Engineering, American Society of Civil Engineers, 145 (12), 04019151.



Still an exciting area with many opportunities

A look to the - o
future * Resilience and remaining life

’ ~ e Design to minimize damage

“Resolved”
iIssues

. ) e Design for repair

( )

Ongoing work
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CIVIL AND ENVIRONMENTAL
ENGINEERING

Thank you!

https://faculty.engineering.ucdavis.edu/kanvinde/
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