

Twin Ports Interchange Reconstruction Project Planning Through Construction

2023 Structural Engineering Series

February 28, 2023

Patrick Huston, P.E. | Assistant District Engineer – MnDOT District 1 Duluth Nick Haltvick, P.E. | North Region Bridge Construction Engineer – MnDOT Bridge Office Alex Schulz, P.E. | Project Manager – Kraemer North America

Project Background

Patrick Huston, P.E. | MnDOT District 1 Assistant District Engineer | Major Projects

Interchange and Project Details

- Locally known as the "Can of Worms"
- Built in late 1969-1972
 - Ramp from NB I-35 to NB T.H. 53 was an "addon"
- 33 total bridges (includes Garfield & I-535, 27th Avenue West and T.H.53)
 - 25 overweight permit restricted
 - 2.6% of the bridge deck statewide
- 4th highest interchange crash rate statewide

Alternatives Analysis.....

Duluth's "can of worms" to be replaced with barrel of monkeys

Duluth, Minn. MNDOT has announced that it plans to begin construction of a new Lincoln Park highway in 2019 to replace the infamous "can of worms" with a new freeway system that experts are calling a "barrel of monkeys."

"What really gets my goat," says MNDOT spokeman Cheryl Growe, "is not knowing who let the cat out of the bag. I mean, that's kind of the elephant in the room. I think there's a red herring floating around to give us the lion's share of the blame if it turns into a load of hogwash."

Mayor Emily Larson admit that "some constituents seems to have ants in the pants about this project. But the changes won't hurt a fly,

and everyone can just hold their horses, because it's moving at a snail's pace, so we can have all our ducks in a row and not fowl up that nest of vipers like a bull in a china shop."

If the project is successful, Larson has promised to correct another Duluth eyesore, the infamous Miller Hill of Beans

Stormy Daniels to appear at DECC

Stormy Daniels, whose alleged fling with Donald Trump resulted in scandal and payoffs and whatnot, has launched a "Make America Horny Again!" tour performing at strip clubs.

She will bring her show to the DECC April 1. "Just for Duluth, I'm changing my name to Ice Stormy

Project Goals

• Enhance safety by eliminating blind merges and left exits

- Moving left exits to the right
- Relocating merges

• Replace aging infrastructure

- Reconstructing weight restricted and non-redundant bridges
- Reduces maintenance and closures
- Eliminates some bridge structure

Improve freight mobility

- Allow oversize/overweight freight on the Interstate
- First and last mile to port!

Project Layout/Scope (Fall 2018)

Project Layout/Scope (Fall 2019)

TPI Timeline (Design to Start of Construction)

- Project Development
 - 2016: Roberta Dwyer, MnDOT Project Manager, starts on early work
 - 2018: Dedicated MnDOT team assigned to TPI
- September 2018 Ames/Kraemer Joint Venture (AKJV) selected as CMGC contractor and co-location began
- January 2019 Final Design Final Bridge and Roadway Design teams onboard; key personnel colocated
- July 2019 30% design Work Packages 3 and 4 deferred due to budget shortfall (November 2019)
- March 2020 COVID hits final project development goes remote
- October 2020 Construction starts (Work Packages 1 and 2)
- August 2022 Construction starts (Work Packages 3 and 4)

Replace Aging Infrastructure

Challenge:

The infrastructure in this area comprises 3.5% of the bridge infrastructure managed in the entire state. It is in deteriorated condition and hosts some of the highest crash rates in the state, jeopardizing the ability of this economic engine to safely and efficiently conduct business.

TWIN PORTS INTERCHANGE TIMELINE:Environmental Documentation2017-2018

Design 2018-2020

Construction 2020-2024

PRELIMINARY BLATNIK BRIDGE TIMELINE:Environmental Documentation2020 – 2024Preliminary Design2024 - 2026Design2026 - 2028Estimated Construction Start2028

Replace Aging Infrastructure

Load restrictions and Freight Mobility

Oversize/Overweight Loads not able to travel through interchanges

2019 Local Roads Project (Separate Design-Bid-Build (DBB) Project) - COMPLETE

- Pavement Rehabilitation
 - 46th Avenue W
 - 27th Avenue W & restriping
 - Garfield Avenue & restriping
 - Railroad Street
- New Rail Crossings by BNSF
 - New Rail crossings at 4 locations
 - One crossing removal

2020 TH 194 (Central Entrance) DBB Surfacing: COMPLETE

- Low-bid "Band-Aid" project
- Improve ride and hold pavement together until reconstruction

TPI WP 1 and 2 Scope

TPI WP 3 (TH 53 Bridges) Scope

- Complete reconstruction of the TH 53 bridges
- Limited utility work
- City street reconstruction
- Deferred Fall 2019
- Added back in August 2022 (executed contract)

TPI WP 4 (I-535/Garfield Interchange) Scope

- Reconstruct bridges 69808, 69808A, 69809
- Significant reconstruction of 69810
- Utilities, storm sewer, pavement reconstruction
- Minor track relocation near 69810
- Deferred Fall 2019
- Added back in August 2022 (executed contract)

Public Outreach/ Model and Comments

Contracting Methods & Collaboration

- Design-Bid-Build (Traditional Low Bid)
 - No up-front collaboration
- Design-Build
 - Collaboration between contractor and designer
- CMGC (Construction Manager General Contractor) used on TH 53
 - State is authorized for 20 CMGC projects.
 - 8 either ongoing or complete so far.
 - Collaboration between owner, contractor and designer BEFORE CONSTRUCTION (and during!)
 - Contractor selection complete: Ames/Kraemer Joint Venture

CMGC Benefits & Challenges

Benefits

- Innovation Contractor input into the design process
- Cost Management Contractors provide real-time cost information
- Design Savings Streamline design
- Design Control MnDOT retains control of the design, with contractor input
- Construction Risk Construction risks mitigated during project development
- Cost Certainty Greater cost certainty earlier in the project
- Time Savings Able to deliver early work packages similar to design-build

Challenges

- Cost Validation Negotiated versus bid contract
- Culture Relatively new to the transportation industry

TPI CMGC Project Team Members

- Project Team
 - Owner: MnDOT
 - Designers: Many (or everybody)!
 - Contractor: Ames Kraemer Joint Venture (AKJV)
- Key individuals were co-located at 1220 Railroad Street for project development until COVID 19 hit

• Co-location

CMGC Test Programs

Challenges Worked Through in Advance/Preconstruction

Contaminated Soils

Contaminated Water

Contaminated Water

Limited area to work, store materials, etc.

- Confined Work Area
 - Limited areas for laying down construction materials
 - Limited areas for storing soil
 - Some double handling of materials will be necessary
 - Very tight quarters to construct the project

Limited area to work, store materials, etc.

Soil Storage – No Room Onsite!

Current Soil Storage Areas

Lower Michigan Street Utilities

Foundations/Ground Improvements

- Geotechnical-
 - Very poor non-uniform soils, mostly old fill and debris
 - Ground improvements and cost associated with them were not known at time of planning;
 - Design as advanced and the foundation costs have become more defined.

Foundations/Ground Improvements

Load Transfer

Column or Pile Supported Embankment

Foundations/Ground Improvements –Test Section

Foundations/Ground Improvements

Foundations/Ground Improvements

Historic Shoreline

Archeological and Cultural

Railroad Coordination (BSNF)

- Early and frequent coordination with contractor engineering submittals and approvals
- = less risk and quicker construction start

Combined Miller and Coffee Creek Culvert

Combined Miller and Coffee Creek Culvert

- Miller Creek Culvert Replacement
 - Deep placement
 - 10 stages of construction
 - Supporting the roadway during construction
 - Staging across the railroad
 - Poor soils
 - Require deep foundations
 - Under bay water level

Miller and Coffee Creek – they are a project on their own!

Combined Miller-Coffee Creek Box Culvert

Traffic Staging: The Driver for 2020/2021

Traffic Staging: CMGC Benefits during Prelim/Final Design

- Used lower Michigan for two lanes of SB I-35
- Advantages:
 - 4 lanes of traffic through the winter
 - Allowed work to proceed through the winter
 - Reduced construction by a year

Overall Project Staging Summary

- Fall 20: Two lanes in each direction on I-35. Working offline.
- Spring 21 Fall 21: Single lane in each direction on I-35.
- Fall 21 Fall 23: Maintaining two lanes in each direction on I-35 will keep traffic flowing (I-535 and US Hwy 53 detoured)
- Lower Michigan St. bypass allows two lanes of traffic on I-35 in each direction allowing year-round construction and shortens project by one year
- Fall 2023: I-35 and I-535 open to traffic
- Fall 2024: USTH 53 open to traffic
- 2025: Final completion

Plans and Specifications – 9,505 sheets/pages

MINNESOTA DEPARTMENT OF TRANSPORTATION 395 JOHN IRELAND BOULEVARD MS 650 ST. PAUL, MINNESOTA 55155-1800 FOR HIGHWAY CONSTRUCTION AND MAINTENANCE PROJECTS WITH BIDS RECEIVED UNTIL 9:30 O'CLOCK A.M. ON SEPTEMBER 11, 2020

Proposal of <u>AMES KRAEMER JOINT VENTURE</u> (NAME OF FIRM)

2500 County Road 42 W, Burnsville, MN 55337

(952)892-8650 (AREA CODE-TELEPHONE NUMBER

TO FURNISH AND DELIVER ALL MATERIALS AND TO PERFORM ALL WORK IN ACCORDANCE WITH THE CONTRACT. THE PLANS AND THE APPROVED DEPARTMENT OF TRANSPORTATION "STANDARD SPECIFICATIONS FOR CONSTRUCTION, 2018 EDITION" (USING ENGLISH UNITS), ON FILE IN THE OFFICE OF THE COMMISSIONER OF TRANSPORTATION EXCEPT AS STATED OTHERWISE IN THE SPECIAL PROVISIONS, WHICH ARE PART OF THIS PROPOSAL, FOR:

PRIME SP:	6982-322WP1 and WP2	CONTRACT ID:	200605	
STATE PROJECT NO.:	6982-322WP1 (TH 35=103), 6 6980-60WP1 (TH 535=390) 6982-322WP2 (TH 35=103), 6 6980-60WP2 (TH 535=390)	915-136WP1 (TH 53=106), 915-136WP2 (TH53=106),		
FHWA PROJECT NO.:	BLD-NHFP-NHPP I350(129)			
LOCATION:	In St. Louis County on: TH 35 from 0.28 Miles South f TH 53 from W Michigan St to TH 335 from 0.2 Miles East of In St. Louis County on: TH 35 from 0.28 Miles South f TH 535 from 0.3 Miles East of TH 535 from 0.3 Miles East of	f 27th Ave W to 0.1 Miles No: 21st Ave W TH 35 to TH 35 f 27th Ave W to 0.1 Miles No: 21st Ave W TH 35 to TH 35	rth of Garfield Ave rth of Garfield Ave	
TYPE OF WORK:	Grading, Bituminous Mill & St Improvements, and Bridge Nos Grading, Bituminous and Conc ADA Improvements, and Bridg	rfacing, Box Culvert, Lighting 69905, 69909, 69X19 rete Surfacing, Retaining Wall e Nos. 69902, 69903, 69904, 6	, Signal, TMS, ADA s, Lighting, Signals, ' 9906, 69910, 69139	TMS,
LENGTH:	1.895 Miles			
STARTING October 01	DATE: , 2020	COMPI Ju:	LETION DATE: ne 01, 2025	
	This Contract Contains Intermed	ate Completion Requirements	1	
NOTICE TO BIDDERS:	ALL BIDS MUST BE SUBMI	ITED ELECTRONICALLY	r.	
SAFO	This Proposal is complete and re Tom Styrbicki	ady for letting. Digitally signed by Tom Date: 2020.07.28 09:48:3	Styrbicki 5 -05'00'	
SALO	Tom Styrbicki, Director, Office	of Project Management and T	echnical Support	JMS
BID RIGGING IS A SER EVEN A REQUEST TO GENERAL'S OFFICE AT	OUS CRIME. IF YOU HAVE A SUBMIT A COMPLIMENTA TELEPHONE NO. 651-296-179	NY INFORMATION CONCE RY BID, PLEASE CALL T	RNING COLLUSIV HE MINNESOTA	E BIDDIN ATTORNE

this dominant in an alternative format, alasso contest the Affirmative Astion Office at 651-266 1710 or

Project Facts

- Construction Cost: \$276 million (WP 1 and 2) + \$159 (WP 3 and 4) = \$435 million
 - \$221 million paid to date; tracking within budget and on schedule
- Substantial Completion (open to traffic):
 - I-35 and I-535 fall of 2023
 - USTH 53 fall of 2024
- Final Completion: Spring/Summer 2025

Foundations for Non-Geotechs

Nick Haltvick | MnDOT

Timeline

Preliminary (2018)

Image Courtesy Duluth News-Tribune

Variety of soils

Preliminary (2018)

Existing pile records

Preliminary (2018)

3D Subsurface Model

3D View

Subsurface - cross section

Images Courtesy Itasca Consulting Group

Main Interchange

Preliminary (2018)

Bridge 69902

Preliminary (2018)

Bridge 69902 Piers 1 & 3

Preliminary (2018)

BRIDGE

69902

PIER 1

Preliminary (2018)

BRIDGE 69902

PIER 3

			1227		610
	-	Coh SPT	Eleval	lion 605.6	010
		(part) N60	The T	SANDY LOAN dork brown malet	-
		19	Eth.	wood, loarny sand, clay and	600
		30	1000	creosole odor. A-2-4, fill	
		4	100	SANDY LOAM, dark brown,	
		510		reddian dense, a liffle wood and reddish brown clay, A-2-4, fill	590
		730		GRAVEL, brown, wet, dense, A-1-a,	
		480 5	- H	CLAY LOAM, brown, moist, stiff,	500
	152	+00 12	- E H	A-6, fill or alluvium	580
		400		organic, brown, moist, solt, lenses	
		630 WH		and laminations of sand and red	570
			· [11]	SANDY CLAY LOAM, organic, dark	310
No Sempling 0 - 845'	11	530 3/05 4/05	2.4 -1	brown, moist, soft, laminations of	
No sempling 0 - 04.5	-	11		PEAT, partially to well decomposed,	560
		840	1	with wood, dark brown and black,	
	1	9	1	SILT LOAM, highly organic, brown,	
	- I			moist, medium dense, lenses of	550
			199	deposit	
	1	22		SILTY CLAY, organic, trace roots,	
				dluvium or swamp deposit	540
	-		100	CLAY LOAM, reddish brown, moist,	
		59	185	sand, A-5, alluvium	670
			· [3]-	CLAY, reddish brown, wel to moist,	530
	- -			40.5°, A-7-6, alluvium	
		59	18	CLAY, brown and grayish brown	520
LOAM, gray, wet, very dense,	111 - 28	61	- Kit-	alluvium	320
A-2-4, alluvium	B	15	-	LOAMY SAND, fine, brown, wet,	
dense, A=4, alluvium		15		A-2-4, alluvium	510
SLIGHTLY PLASTIC SANDY	29	20	1 200	SANDY LOAM, brown, wet, very	
dense, A-4, alluvium	1450	20		CLAY, possible gravel about 93",	
SILTY LOAM, gray, wet, very	10			reddish brown and dark gray	500
olluvium	2570 14		1	A-7-6, alluvium	
CLAY, brown to gravish brown to	1145 10	19	-		1000
aminations of silt, A-7-6, alluvium					490
CLAY, gray to brown, moist, very	21 21				
alluvium	2360 17	24		SILTY CLAY, dark grayish brown,	400
SILTY CLAY, gray, a little light				invisi, tery sint, A 7 9, unutrum	480
A-6, alluvium	C7	70			
SILTY CLAY LOAM, grayish brown,	1580 32	50			470
of silt and clay, A-6, alluvium			- 100	CLAY LOAM, dark grayish brown,	
SILT LOAM, groy, molst, A-4,	C682	76/0.5 61/	/0.1	Bottom of Hole-139.6'	
SILTY CLAY LOAM, grayish brown,	92 89	Multiple	blow cour	nts shown	460
moist; very stiff, laminations of silt;		on single	i line rep	present 6 in.	
SILTY CLAY, gray to brownish		or berne	i Generativo	anon volums	
gray, moist, hard, laminations of					
Apparent boulder					
SANDY LOAN, gravish brown					
moist, very dense, laminations of					
PLASTIC SANDY LOAM, cravish					
brown, moist, hard, lenses of clay					
A-5. Fil					
Top of Bedrock					
END OF HOLE - 154.5					

Initial Foundation Analysis

- An upper layer of weak soils in the first 40 to 60 feet, followed by a dense sand that varies in thickness from 20 to 60 feet
- Deeper soiling boring indicated that in several locations, this dense layer of sand is underlain by a compressible layer of clay, followed by bedrock.

Two scenarios applied to 16 substructures (7 Bridges):

- 1. Drive HP Piling to Rock
 - 40,300 LF
 - \$3.9M
- 2. Stop piling in dense layer
 - 16,800 LF
 - \$2.1M

Initial Foundation Analysis

Preliminary (2018)

 Initial settlement calculations indicate that long-term settlement could be as much as 2.5 inches under the dead load of structures that do not have piling which extend through the lower layer of compressible clay to bedrock

Goals

Testing (2019)

- 1. Determine the <u>geotechnical capacity</u> of larger diameter CIP Concrete Piling that are not typically installed on MnDOT projects.
- Quantify the amount of the <u>load transfer due to</u> <u>end-bearing and skin friction</u> from the piling into the soil in order to refine the pile group <u>settlement calculations</u>.
- 3. Define the neutral plane location to <u>refine the</u> <u>down drag analysis</u>.
- 4. Assess the likelihood of <u>potential cost and time</u> <u>saving</u> associated with suspending friction piles in the upper dense sand layer as compared to driving to the lowest dense layer or bedrock.

DEPARTMENT OF TRANSPORTATION

DRAFT Memo

Date: 04/25/2019

- To: Tom Lund & Aaron Gunderson, MnDOT District 1
- From: Nick Haltvick, MnDOT Bridge Office

RE: Twin Ports Interchange - Test Pile Program in BNSF Railyard Area

Background

The information below pertains to the proposed test pile program for the Twin Ports Interchange Project (TPI). The BNSF Railyard area of the project is characterized by a layer of weak soils in the first 40 to 60 feet, followed by a dense sand that varies in thickness from 20 to 60 feet. Deeper soiling boring indicated that in several locations, this dense layer of sand is underlain by a compressible layer of clay, followed by bedrock. Initial settlement calculations indicate that long-term settlement could be as much as 2.5 inches under the dead load of structures that do not have piling which extend through the lower layer of compressible clay to bedrock.

A test pile program is recommended in the area of the BNSF Railyard to address the following items

- Determine the geotechnical capacity of larger diameter CIP Concrete Piling that are not typically installed on MnDOT projects.
- Quantify the amount of the load transfer due to end-bearing and skin friction from the piling into the soil in order to refine the pile group settlement calculations.
- Assess the likelihood of potential cost and time saving associated with suspending friction piles in the upper dense sand layer as compared to driving to the lowest dense layer or bedrock.

In addition to data collected with the pile installation, additional soil testing of the lower layer of compressible clays to refine the anticipated long-term settlement due to consolidation and collection of deeper borings to determine depth to the lowest dense layer or bedrock.

The results of this program will be used to address possible pile length at several substructures. The anticipated foundation pile length considers two scenarios:

- Drive piling to the lowest dense layer or bedrock (if present). Assumes that piles advance through any
 upper dense layers (assumption based on past observation by others) and the underlain compressible
 clays. This results in the longest anticipated pile lengths and minimizes any risk of long-term
 consolidation of the underlain clay.
- Drive piling into upper dense layer until resistance is achieved. This scenario is only considered when the upper dense layer is at least 20 feet thick and utilizes the results from APILE presented in the

Testing (2019)

Test Locations

Possible Test Pile Location Note that locations >15' from railroad do not require a permit.

Location	Ground EL [ft]	Top of Dense Layer EL [ft]	Depth from surface [ft]	Bot. of Dense Layer EL [ft]	Dense Layer Thickness [ft]	Est. EOD from surface [ft]
69902 P1	606	553	53	523	30	63
69902 P3	605	541	64	518	23	75

<u>Test Piles</u>
$D_0 = 20$ inch
t = ½ inch

Axial Limit	Φ	ФRn [kips]
Driveability	1.00	936
Steel Only	0.70	728
Composite	0.70	1248

1000 Ton MnPile Test Frame

Pile	Estimated Pile Length [ft]	Installed Pile Length [ft]	Estimated depth to dense layer [ft]	Observed depth to dense layer [ft]	
P1 16" Rx	70	80	E2	~ 65	
P1 20" TP	70	75	55		
P3 16" Rx	80	95	C A	~ [1	
P3 20" TP		65	04		

	DISTANCE	E DROP OF ENER HAMMER PER F OR RAM BLOV (feet) (ft. lbs	ENERGY	GV BL	ows	PENET. PER BLOW (inches)	BEARING IN TONS
	BELOW CUT-OFF (feet)		PER BLOW (ft. lbs.)	PER FOOT	PENET IN LAST 10 (inches)		
	60	5.9	59826	4		3.000	81
	61	61	61854	5		2 400	97
	62	6.1	61854	5		2.400	97
	63	6.8	68952	8		1.500	137
	64	8.4	85176	24		0.500	240
	65	8.5	86190	25		0.480	245
1	66	8.5	86190	- 32		0.375	265
	67	9.0	91260	28		0.429	261
	68	8.6	87204	35		0.343	274

Test Pile	Test Condition	MPF12 [kips]	PDA [kips]	Static Load Test [kips]
P1	EOD	674	917	-
	RST	670	939	-
	SLT	-	-	960
P3	EOD	602	924	-
	STL	-	-	840

<u>NOTES</u>

- Restrike (RST) occurred 6 days after initial end of drive (EOD).
- Static Load Test (SLT) occurred about 22 days after EOD for both locations.
- Resistances (MPF12, PDA, and Static Load Test) are shown as nominal bearing resistance.

Conclusions

Br69902 – Pile Type & Lengths

FOUNDATION				Bridge No.	69902					Sheet 1 of 2
RECOMMENDATION				Location:	I-35 NB to	I-535 SB Ra	mp (ove	r RR	(TPI)
Bridge Construction Unit					1	-	Rep	ort	No.	2025
Substructure Unit	Approx. Station	Est. Bottom Elevation of Footing or Cap	Foundation Type	Factored Resistance (tons)	No. Test Piles	Test Pile Length (ft)	Tip Protect.	Redrive	PDA	Est. Fnd. Pile Length (ft)
W. Abut	18+43.0	600.0±	20"x3/8" CIP	300	3	115	1	Х	2	105
Pier 1	20+79.0	597.0±	20"x3/8" CIP	300	2	75		Х	х	65
Pier 2	23+00.0	605.0±	20"x3/8" CIP	300	2	75		Х	х	65
Pier 3	24+63.0	605.0±	20"x3/8" CIP	300	2	85		х	х	75
E. Abut	26+54.0	616.3±	20"x3/8" CIP	300	2	95		Х	Х	85
Foundation Memo date: 2/7/2019, 11/22/2019										
Bridge Hydraulics Memo date: N/A										
Preliminary Plans Request date: 02/15/19										

Pile Size Determination

• Two pile types:

- HP14x89 (to rock)
- CIP20"x3/8" (to dense layer)
- Similar factored capacities
 - 250 tons (HP), 300 tons (CIP)
- CIP determined to have adequate:
 - lateral soil resistance
 - down drag resistance when battered

Br69902 – Pile Type & Lengths

Location	Borings	Length	Remarks
W. Abut.	T152, T224, T401, T451	105'	average depth to bedrock from borings (varies by 15')
Pier 1	T225, T450	65'	estimated to stop approx. mid-depth of 30' thick layer of dense sand
Pier 2	T226	65'	estimated to stop approx. mid-depth of 40' thick layer of dense sand
Pier 3	T227, T448	75'	estimated to stop approx. mid-depth of 30' thick layer of dense sand
W. Abut.	T228, T229, T447	85'	estimated to stop approx. mid-depth of 40' thick layer of dense sand

Recommendations & Design (2020)

BRIDGE 69902

PIER 3

					ľ	-		
						122	7	610
				Coh (psf)	SPT N60	Llev	dlion bus to	
				T	30 19			600
,					·30· 15		bituminous, dense, possible creosole odor, A-2-4, fill	
				510	4		M SANDY LOAM, dank brown, M medium dense, a little wood and	590
				730	· 5·	X	GRAVEL, brown, wet, dense, A-1-a,	
				480	5		CLAY LOAM, brown, moist, stiff,	E 9 0
				400	12		SANDY CLAY LOAM, slightly	560
				400	WН		organic, brown, moist, soft, lenses and laminations of sand and red	
				630	· 6·		SANDY CLAY LOAM, organic, dark	570
No Sampling 0 - 84.5'				530 3/0.5	/0.5	10.6	brown, moisl, sofl, laminations of sand, A-8, alluvium	
					11 10		PEAT, partially to well decomposed,	560
				840	9		moist, A-8, swamp deposit SILT LOAM, highly organic, brown,	
							moist, medium dense, lenses of well decomposed pegi. A-8, swamp	550
			NO.8 & 9		22		SILTY CLAY, organic, trace roots,	
			85' LONG		22	*	brown, moist, very soft to firm, A-8,	540
					-52	2000 2003	CLAY LOAM, reddish brown, moist,	
					59	1	sand, A-6, alluvium	530
					-52		And S A - S - S - S - S - S - S - S - S - S	
					59		CLAY, brown and grayish brown	520
LIGHTLY PLASTIC SANDY LOAM, gray, wet, very dense,	23				-61-		alluvium	520
A-2-4, alluvium SILT LOAM, gray, wel, medium					15		medium dense to very dense,	
dense, A-4, alluvium SLIGHTLY PLASTIC SANDY	68				20.		SANDY LOAM, brown, wet, very	510
LOAM, brownish gray, wet, very dense, A-4, alluvium	-	1450			20	-	CLAY, possible gravel about 93',	
SILTY LOAM, gray, wet, very dense to medium dense, A—4,		2570					mottled, moist, sliff to very stiff,	500
alluvium CLAY, brown to gravish brown to		2611			19		A-7-6, diluvium	
gray, moist, very stiff to stiff, laminations of silt, A-7-6, alluvium	10							490
CLAY, gray to brown, moist, very stiff, laminations of silt, A-7-6,	21	0270			24		SILTY CLAY dark gravish brown	
alluvium SILTY CLAY, grov, a little light	17	2560			<u>4</u> 4		moist, very stiff, A-7-6, alluvium	480
gray, moist, laminations of silt loam, A-6, alluvium	25							
SILTY CLAY LOAM, grayish brown, moist, very stiff to hard, laminations	32	1580			30			470
of silt and clay, A-6, alluvium		2835					CLAY LOAM, dark gravish brown, moist, very hard, A—6, alluvium	
alluvium	92			76/0	1.5 61/0		Bottom of Hole-139.6	460
moist, very stiff, laminations of silt,				on	single	line re	unis snown spresent 6 in. ration values	100
SILTY CLAY, gray to brownish						Lawrineiri		
silt, A-7-6, diluvium								
GRAVELLY SLIGHTLY PLASTIC								
molst, very dense, laminations of								
PLASTIC SANDY LOAM, grayish								
loam, laminations of loamy sand,								
Top of Bedrock								
END OF HOLE - 154.5								

2/28/23

- Pile group settlement based on the piling hanging up in the upper dense layer of sand has been estimated to vary between 0.5" and 1.1" over the service life of the bridge. Given the span lengths and structure type, this settlement has been determined to be permissible.
- Downdrag has been quantified on a project-wide level as 250 kips per pile. Batter piles will be permissible.

Br69902 – Key Remarks

Recommendations & Design (2020)

Tip Protection: use a CIP-1/2" thick
X 10 long section for tip protection of
CIP at west abutment.

③ Water table will likely impact the West Abutment and Pier 1.

Recommendations & Design (2020)

(4) At Pier 2 & 3 and East Abutment, galvanize the upper #' of piling. This is to provide enhance corrosion protection in the wet/dry zone near EL. 603.

Variation in Lengths

REC MIN AVG MAX

Pier 3 Lengths

Pier 3 Lengths

Pier 3 Pile Analysis

2/28/23

mndot.gov

Pier 3 Pile Analysis

mndot.gov

Pier 3 Pile Analysis

Pier 3 Lengths

Pier 3 Lengths

Pier 1 Lengths

Pier 1 Lengths

NORTH

WP 1 & 2 Pile Lengths

Weekly meetings, daily interactions

		TWIN PORTS INTERCHANGE (TPI) PROJE MnDOT - CMGC State Project No. 6982-322	CT						2/21/20.	23
Date Receiv	e Transmit red No.	tal Submittal Description	Rev.	No. Bridge	No. Subm	ittal Roll in			*2 week d [per CMG	ur C i
10/10/2	22 T-1306	WP3_4 Hammer Report Br.69808 D19-42		60000 and	Тур	e Court	BNSF Review/App oval Regid?	Status	*Date Due	e
10/20/0	2 1-1335	WP3_4 Hammer Report Br.69808A D19-42		69808 (W	P4) Spec.R	qmt. AKJ∨	No	Returned		_
11/09/20	2 T-1363	WP3_4 NEO WP4 Lighting		(WP4)	Spec.Ro	lmt. AKJV	No	Returned	10/24/22	_
11/21/22	T 1400	WP3_4 Hammer Report Br.69809 Delmag D19-	42	Roadway	y Spec.Rq	mt. AKJ∨	No	Returned	11/02/22	+
01/18/23	T 1405	WP1_2 ConcreteMountedSigns Shop Dwgs		Boadway	24) Spec.Rq	mt. <mark>AK</mark> JV	No	Returned	11/23/22	$\frac{1}{2}$
02/13/23	T-1495	WP3_4 Br.69808 Decking Formwork		69808 (WD	Spec.Rq	nt. AKJV	No	Returned	12/05/22	ł
02/13/23	T-1558	WP3_Drainage Shop Drawings - Fiberglass WP4_Br69808A Drainage St	1	69139	4) Spec.Rqn Shop	nt. AKJV	Yes	Returned	02/01/23	ł
02/13/23	T-1559	Fiberglass WP4_Br69808 Drainage Shor D		69808A	Drawings Shop	MnDOT	No	Open	02/27/23	
02/16/23	T-1566	Fiberglass		(VVP4) 69808 (WP4	Drawings) Shop	MnDot	No	Open	02/27/23	
02/17/23	T-1567	WP3_Br69139C Drainage Shop Dervice		69903	Drawings Shop	MnDOT	No	Open	02/27/23	
02/17/23	T-1568	-Iberglass VP4 Wall AK Handrall or		69139C (WP3)	Drawings Shop	MaDor	No	Open	03/02/23	
02/20/23	T-1268.1 R	etaining Wall B a Wall		Roadway	Shop	Mapor	No	Open	03/03/23	
		W Pipe Railing Shop Drawings	1	Roadway	Drawings Spec Romt	MINDOT	No	Open	03/03/23	
					-pee.RqmL	MNDOT	No	Open	03/06/23	

SUBMITTAL

Thank you!

Nick Haltvick, P.E.

nick.haltvick@state.mn.us

Design Consideration

Jeff Cavallin | Parsons Transportation Group Nick Haltvick | Minnesota Department of Transportation

Bridge Design Oversight Manger

- Complex Construction Staging Development for Miller/Coffee Creek Culvert
 - Staging under both I-35 and BNSF railroad tracks
 - Temporary shoring design / dewatering

Miller-Coffee Creek Culvert

Existing Structure

Miller-Coffee Creek Culvert

- Early coordination with the railroad
 - Existing footing removal
 - Earth shoring for excavations

Super Load Study

- The Twin Ports Interchange (TPI) Project
 - Super Load = OSOW = Oversize Overweight Permit Loads
 - May consist of any/all: Heavy Loads, Tall Vertical Heights, Long Overall Lengths/Turning Movements
- TPI Project Goals
 - Provide for Increased Bridge Design Capacity to handle heavy Permit Loads
 - Provide for Increased Geometric Capacity to handle large oversize Permit Loads
 - Reduce reliance on relief routes that use local streets

Super Load Study

- Reviewed over 3000 single trip permit vehicle data sets from Duluth-Superior Port
- Compared with MnDOT Standard Permit Load Rating Vehicles

Summary of Single Trip Special Permit Vehicles January 1, 2010 to October 10, 2017									
Parameter	Unit	Selected Upper Limit Parameter	No. of Permits Within Limit	% of Permits Within Limit					
Gross Vehicle Weight ¹	lb.	255,000	2,994	93%					
No. of Axles Total ¹		13	2,849	88%					
Maximum Axle Load ²	lb.	23,000	3,132	97%					
No. of Axles at Maximum Axle Load ¹		12	3,093	96%					
Height	ft.	16	3,179	99%					
Length ¹	ft.	117	2,559	79%					
Width	ft.	10	3,142	97%					
Average Gross Vehicle Weight ³	lb./ft.	2,900	3,144	98%					
Total No. of Permits	3,223								
¹ Standard P413 Truck ² Standard C198 23 Truck ³ Standard C152b Truck									

Super Load Study

Note: Maximum Standard Permit Vehicles = 2,900 lb./ft.

TPI Project Super Load Design Criteria

- Precast Concrete Beam Structure Types Design per standard MnDOT Bridge Design Manual
- For Curved and Skewed Steel Girder Structure Types Include the MnDOT Special S351 single trip rating vehicle as an additional design permit load

SINGLE TRIP - SPECIAL S351 - WEIGHT = 350.9 K

Visual Quality Process

- Project split into segments
- Engagement with multiple stakeholders
- Open houses
- Precedent imagery
- Project textures and colors

I-35, I-535, TH 53 TWIN PORTS INTERCHANGE Visual Quality Manual

MnDOT DISTRICT 1

Visual Quality – Main Interchange

Visual Quality – Main Interchange

Visual Quality – 27th Avenue

mndot.gov

Visual Quality – TH 53

Br.69902:

- I-35 NB ramp to I-535 SB (over BNSF)
 Br.69904:
- I-35 SB ramp to I-535 SB (over I-35, I-535 Ramp, BNSF)
 Br.69905:
- I-535 NB ramp to I-35 NB (over BNSF)

Curved Steel Flyover Bridges

69905

69902

BEEF EFE

Br.69902:

2/28

- I-35 NB ramp to I-535 SB (over BNSF) Br.69904:
- I-35 SB ramp to I-535 SB (over I-35, I-535 Ramp, BNSF) Br.69905:
- I-535 NB ramp to I-35 NB (over BNSF)

Curved Steel Flyover Bridges

Steel Superstructure Design Committee

- Comprised of Lead Designers from each of the three steel flyover bridges
 - Br.69902 Parsons, Br.69904 MnDOT, Br.69905 Michael Baker Intl.
- Monthly meetings during design schedule to coordinate design among teams for consistency in final bridge design plans
- Coordination Items Included:
- ✓ Use of MnDOT Std Details
- ✓ Disc Bearing Std Details
- ✓ Modular Expansion Joint Detailing
- ✓ Cross Frame and Diaphragm Detailing

✓ Field Splice Locations

- ✓ Structural Steel Grade / Hybrid Design
- ✓ Girder Painting Limits
- ✓ Bridge Deck Drain Details

Existing Bridge Removals

- Segment 1 Main Interchange includes 27 existing bridge removals
 - MOT / Construction Staging required several 'partial' bridge removal operations requiring detailed structural analysis and load rating work
 - Steel girder structures, including in-span hinge joints as well as some fracture critical steel piers
- Segment 2 TH53 bridge removals included full removal of the 2 main reinforced concrete box girder structures and the 4 connected ramp structures
 - In-span hinge joints
- Segment 3 I-535/Garfield included full superstructure removal of the 4 reconstructed bridges as well as full or partial above ground substructure removal

Main Interchange 'Can of Worms' Existing Bridge Removals

Partial Existing Bridge Removals

Stage 1 "Intersection in the Sky" Removal Limits

Above

Below (Looking North)

Existing Bridge Removals

- AKJV teamed with MnDOT Bridge Design Consultant Partner LHB for detailed analysis and load rating work for partial removal of existing bridges where traffic would remain supported - to confirm no degradation of existing load ratings throughout removal sequence
 - Example of the 'Intersection in the sky'; off ramp from I35 NB to TH53 NB

Existing Bridge Removals

STAGE 3 REMOVALS WP 1 TPI Main

2/28/23

TH53 Existing Bridge Removals

TH53 Existing Bridge Removals

What happens when you are overbudget?

What happens when you are overbudget?

mndot.gov

DEPARTMENT OF TRANSPORTATION

Thank you!

Jeff Cavallin | Parsons Transportation Group Nick Haltvick | Minnesota Department of Transportation

mndot.gov

TPI Construction Challenges

Alex Schulz, P.E. | TPI Construction Manager - Kraemer North America

CMGC Procurement

Cost and Schedule Certainty

Constructability Reviews

Long Lead/Critical Submittals

- Temporary Earth Retention Systems
- Bridge Demolition Plans
- Girder Erection Plans
- MnDOT/BNSF Review

Preconstruction Submittals

Temporary Earth Retention Systems

- Traffic/RR Staging
- Foundation Type and Location

Bridge Demolition Plans

- Traffic Staging
- Structural Stability

Girder Erection Plans

- Field Splices
 - Trucking Concerns
- Shoring Tower Locations

27th Avenue Bridge

- Maintaining Traffic
 - Installation
 - Bridge Construction

Main Interchange Area

• RR Track Support

27th Avenue Bridge - ERS Installation

mndot.gov

27th Avenue Bridge – Bridge Construction

27th Avenue Bridge – Bridge Construction

Temporary Earth Retention Systems – Main Interchange

mndot.gov

27th Avenue Bridge

• Weekend Closure

Main Interchange Area

- Staged Demolition
- Detailed Removal Sequence
- RR and Freeway Constraints
 - Superstructure Removal

27th Avenue Bridge

2/28/23

Main Interchange Area

- Staged Demolition
- Detailed Removal Sequence
- RR and Freeway Constraints
 - Superstructure Removal

TH53 Bridge

- Proximity to public
 - Vibration Monitoring
 - Dust Control
 - Utility Protection
 - Controlled Access
- Unique Structure Type
 - "Non-Linear" Hinges
 - Falsework

mnaot.gov
TH53 Demolition

TH53 Demolition

Miller/Coffee Creek Box Culvert

Miller/Coffee Creek Box Culvert

Miller/Coffee Creek Box Culvert

Miller/Coffee Creek Box Culvert Outlet – Support Piling

Miller/Coffee Creek Box Culvert Outlet – Structure Excavation

Timber Pile Discovery

2/28/23

Seal Pour

Temporary ERS/Permanent Construction Interface

Miller/Coffee Creek Box Culvert - Middle

Miller/Coffee Creek Box Culvert - Middle

Miller/Coffee Creek Box Culvert – Weir Pours

Miller/Coffee Creek Box Culvert – Final Stripping and Opening

2/28/23

Foundation Piling

- 20"/16" Pipe and 14" H-Piling
 - Overall Quantity
 - 142,000 LF (Proposed WP1/2)
 - Material Handling/Storage
 - Variable soil conditions and bedrock depth
 - Additional Piling (Added HP, test piling)
 - Galvanizing
 - Quantity Management
 - Piling in Water

Cast-In-Place Retaining Walls

- Variable Heights
 - Multiple formwork types needed
- Proximity to RR
 - Schedule impacts
 - Access issues
- Reduced schedule
 - Clashing operations/activities
 - Formwork needs
 - Dissipating cure

Cast-In-Place Retaining Walls

- Arched Facade
 - Bridge 69909
 - Bridge 69906
- Formliner
 - WP2 CIP Retaining Walls
 - WP2 Abutments
 - WP3 Substructure

Arched Facade

• Bridge 69909

Visual Quality – TH53 Substructure

2/28/23

mndot.gov

Submittals

- Precision Bolting System
- Quality Management Plan

Training

• Project Specific training for all project personnel operating the Precision Bolting System

Delivery Challenges

- Multiple staging/offload locations
- Load Restricted Bridges
- Police Escorts
- Traffic Control

Delivery Challenges

- Multiple staging/offload locations
- Load restricted bridges
- Police Escorts
- Traffic Control

Delivery Challenges

- Multiple staging/offload locations
- Load restricted bridges
- Police Escorts
- Traffic Control

Quality Issues/Challenges

- Material Testing Failures
 - Washer galvanizing thickness
 - DTI hardness
- Steel fabrication
 - Undersized/missing splice holes
 - Undersized/missing bearing/flange holes
- Blocking Challenges
- Access Challenges

Steel Girder Erection – Access Challenges

Steel Girder Erection – 69902 Span 1 Misalignment

mndot.gov

Winter and Mass Concrete

- Temperature Control
 - Command Center software
 - Blankets/Poly
 - Heaters
 - SPCC Plan/Environmental
- Schedule
 - Necessary to pour in winter
 - Extended Cure Time
 - Additional Formwork

Winter Concrete

Railroad Coordination

- Full time BNSF flagger
- Pre-Activity Meetings
- Full/Intermediate Closure Planning
 - Bridge Demolition
 - Girder Setting
 - Deck Forming
 - Deck Pours
 - Stripping
 - Painting

Railroad Coordination

2/28/23

Mainline 135 Closure Planning

- Fully or partially close I35 traffic
 - Multiples bridges/spans
 - Bridge Demolition
 - Girder Setting
 - Deck Forming
 - Deck Pours
 - Stripping
 - Painting

Thank you again!

Alex Schulz

Kraemer North America

aschulz@kraemerna.com

612-248-5660

Check out posted photos and videos

- Sign up for updates on the project website: <u>https://www.dot.state.mn.us/d1/projects/twin-ports-interchange/</u>
- There are three project cameras on the project home page

Questions?