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Ductility—Permanent deformation before fracture; 

measured as elongation or reduction in areas.

Elements of Material Science and Engineering: Van Vlack
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The engineering fracture strain is one measure of 

ductility. 

Mechanical Behavior of Materials: Dowling

Another measure of ductility is the percent reduction 

in area, called %RA…. 
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Mechanical Metallurgy: Dieter

Fractures can be classified into two general 

categories, ductile and brittle. A ductile fracture is 

characterized by appreciable plastic deformation 

prior to and during the propagation of the crack. An 

appreciable amount of gross deformation is usually 

present at the fracture surfaces. 
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GLOSSARY

Ductile limit state

Ductile limit states include member and 

connection yielding, bearing deformation at bolt 

holes, as well as buckling of members that conform 

to the seismic compactness limitations of Table D1.1. 

Rupture of a member or of a connection, or buckling 

of a connection element, is not a ductile limit state.
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GLOSARY

Percent elongation

Measure of ductility, 

determined in a tensile test as 

the maximum elongation of the 

gage length divided by the 

original gage length expressed 

as a percentage.
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COMMENTARY GLOSSARY

Brittle fracture. 

Abrupt cleavage with little or no 

prior ductile deformation.
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Ductility

“Steel is an inherently ductile material.”
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• Introduction

Ductility is a material property

Ductile material always leads to ductile performance
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Omer W. Blodgett

1917-2017
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Globe Shipbuilding, Duluth Minnesota
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One of ten V4-M-AV1 ocean-going tugs.
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One of eight S2-S2-AQ1 Frigates
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One of eleven C1-M-AV1 Cargo Vessels
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Original Crack in Plating

48% Elongation
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Strength of Metals Under 

Combined Stresses

Maxwell Gensamer

1941
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Maxwell Gensamer

“This is an important concept and 

needs to be emphasized: no shear 

stress, no plastic deformation or 

flow.”
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Christian Otto Mohr

1835 – 1918

Mohr’s Circles
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STRENGTH OF METALS UNDER COMBINED STRESSES

“So, if smax. (the normal stress) first reaches the 

critical value for cohesive failure, the metal will be 

brittle (behave in a brittle fashion); whereas if tmax. 

(the shear stress ) first reaches the critical value for 

plastic deformation, the metal will deform, that is, 

behave in a ductile fashion.
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STRENGTH OF METALS UNDER COMBINED STRESSES

“So, if smax. (the normal stress) first reaches the 

critical value for cohesive failure, the metal will be 

brittle (behave in a brittle fashion); whereas if tmax. 

(the shear stress ) first reaches the critical value for 

plastic deformation, the metal will deform, that is, 

behave in a ductile fashion.
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critical value for 

plastic deformation

sy, sz Fy Fu
sx
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STRENGTH OF METALS UNDER COMBINED STRESSES

“It is well known that a metal may be ductile under 

one set of conditions and brittle under another. 

Ductility and brittleness, then are properties that must 

be considered as referring to some particular set of 

testing or service conditions.”
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Ductility is function of the testing or service 

conditions.
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Body Centered Cubic (BCC)
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Body Centered Cubic (BCC)

Atomic Packing
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Body Centered Cubic (BCC)
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Body Centered Cubic (BCC)
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Body Centered Cubic (BCC)

119



Body Centered Cubic (BCC)
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Body Centered Cubic (BCC)
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Body Centered Cubic (BCC)
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Body Centered Cubic (BCC)
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Body Centered Cubic (BCC)
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Body Centered Cubic (BCC)
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Body Centered Cubic (BCC)
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Body Centered Cubic (BCC)

45o45o
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Lennard Jones Potential, Atomic 

Interactions, Dislocations, Atomic Packing  
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STRENGTH OF METALS UNDER COMBINED STRESSES

“It is well known that a metal may be ductile under 

one set of conditions and brittle under another. 

Ductility and brittleness, then are properties that must 

be considered as referring to some particular set of 

testing or service conditions.”

130



AISC 341-16 Seismic Provisions

Structural steel systems in seismic regions are generally 

expected to dissipate seismic input energy through 

controlled inelastic deformations of the structure. The 

Provisions supplement the Specification for such 

applications. The seismic design loads specified in the 

building codes have been developed considering the 

energy dissipation generated during inelastic response.

Commentary A1 Scope
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How to Achieve Controlled Inelastic Deformations
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Ductile Material

Cracked Structure
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How to Achieve Controlled Inelastic Deformations

• Select a ductile material
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Ductile Design of                 

Steel Structures

Bruneau

Uang

Whittaker

1998
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Ductile Design of Steel Structures

Preface

“Many practicing engineers have wrongly believed 

for years that the ductile nature of the structural steel 

material directly translates into inherently ductile 

structures.”

Correct view: the ductile nature of steel does not 

directly translate into a ductile structure.
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Ductile Material Ductile Structure

Correct view: the ductile nature of steel does not 

directly translate into a ductile structure.



Ductile Design of Steel Structures

Chapter 1 Introduction

“However, there are many situations in which an 

explicit approach to the design of ductile steel 

structures is necessary because the inherent 

material ductility alone is not sufficient to provide the 

desired ultimate performance.”
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How to Achieve Controlled Inelastic Deformations

• Select a ductile material

• Avoid conditions that prompt brittle fracture

(triaxial stress, constraint, notches, low 

temperatures, high strain rates)
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Ductile Design of Steel Structures

Chapter 1 Introduction

“To achieve this ductile response, one must 

recognize and avoid conditions that may lead to 

brittle failures and adopt appropriate design 

strategies to allow for stable and reliable hysteretic 

energy-dissipation mechanisms. This sort of thinking 

is relatively new in structural engineering.”
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Barsom and Rolfe: Fatigue and Fracture Control in Structures                        

Most structural materials exhibit considerable strain 

(deformation) before reaching the tensile or ultimate 

strength….However, under conditions of low 

temperature, rapid loading and/or high constraint 

(e.g., when the principle stresses s1, s2, and s3 are  

essentially equal), even ductile materials may not 

exhibit any deformation before fracture.
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STEEL CONSTRUCTION MANUAL  15th Edition

A triaxial state-of-stress can also result from 

uniaxial loading when notches or geometric 

discontinuities are present. A triaxial state-of-stress 

will cause the yield stress of the material to increase 

above it nominal value, resulting in brittle fracture by 

cleavage, rather than ductile shear deformations. 

page 2-38
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How to Achieve Controlled Inelastic Deformations

• Select a ductile material

• Avoid conditions that prompt brittle fracture

(triaxial stress, constraint, notches, low 

temperatures, high strain rates)

• Encourage shear stresses
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Region of potential ductility
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Region of limited ductility
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Another need for ductility: welding depends on it.
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L

L + DL

Fy = 50 ksi [350 MPa]

50 kips

DL = PL
AE

DL = 50(10)
1(30E3)

= 0.016 in (0.16 %)

183



L

L + DL

70 oF [20 oC]

DL = L(DT)Cexp = 0.18 in (1.8 %)

2795 oF [1535 oC]

DL = 10(2795 - 70)(6.6E-6) 
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Fy = 50 ksi [350 MPa] 50 kips

2795 oF [1535 oC]

0.016 in (0.16 %)

0.18 in (1.8 %)

Thermal elongation = 10X yield point elongation
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L + DL
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How to Achieve Controlled Inelastic Deformations

• Select a ductile material

• Avoid conditions that prompt brittle fracture

(triaxial stress, constraint, notches, low 

temperatures, high strain rates)

• Encourage shear stresses

• Applied shear stress > critical shear strength

Demand > Resistance

197



198

ASTM A36
A

S
T

M
 A

5
7

2
 G

r
 5

0 Strong column, weak beam



Strong column, weak beam
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Fy-min = 36 ksi

Fu-min = 65 ksi

Fy-max = none



Strong column, weak beam
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Fy-min = 50 ksi

Fy-max = 65 ksi

Fy/Fu = 0.85 max

Fu-min = 65 ksi



How to Achieve Controlled Inelastic Deformations

• Select a ductile material

• Avoid conditions that prompt brittle fracture

(triaxial stress, constraint, notches, low 

temperatures, high strain rates)

• Encourage shear stresses

• Applied shear stress > critical shear strength
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Shear strength
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How to Achieve Controlled Inelastic Deformations

• Select a ductile material

• Avoid conditions that prompt brittle fracture

(triaxial stress, constraint, notches, low 

temperatures, high strain rates)

• Encourage shear stresses

• Applied shear stress > critical shear strength

• Ensure enough material is present to create 

meaningful displacements
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3 in. [75 mm]

12 in.  [300 mm]

0.2 in. [5 mm] thick
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approximately 

2.5 in. [64 mm]
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approximately 

0.2 in. [5 mm]
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12 in.  [300 mm]
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12 in.  [300 mm]

13.5 in.  [340 mm]
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12 in.  [300 mm]
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12 in.  [300 mm]

12.4 in.  [315 mm]
211



212



13.5/12 = 12.5%

12.4/12 = 3.3%
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approximately 

2.5 in. [64 mm]
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approximately 

3.5 in. [90 mm]
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approximately 

0.2 in. [5 mm]
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approximately 

0.3 in. [7 mm]
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13.5/12 = 12.5%

12.4/12 = 3.3%
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1.0

1.0

Fy = 35.0 Ksi [242 MPa]
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0.8

1.0
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0.4

1.0

Fy = 50.7 Ksi [350 MPa]

68o
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0.2

1.0

Fy = 91.0 Ksi [628 MPa]

79o
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Width Length Angle

Yield 

Stress 

(ksi)

Yield 

Stress

(MPa)

1.0

1.0 45o 35.0 242

0.8 51o 35.9 248

0.6 59o 39.7 274

0.4 68o 50.7 350

0.2 79o 91.0 628
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Welded Connections–

A Primer for Engineers

AISC Design Guide 21, 2nd Edition
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Chapter 15: Problems and Fixes

15.5 Fixing Members That Are Cut Short

232



Chapter 15: Problems and Fixes

15.5 Fixing Members That Are Cut Short

Gap > 1 – 2 in. [25 – 50 mm]

Buttering may be a good solution
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Chapter 15: Problems and Fixes

15.5 Fixing Members That Are Cut Short

Gap = 3 in. [75 mm]

W30 X 99

10.4 in.

[264 mm]
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Chapter 15: Problems and Fixes

15.5 Fixing Members That Are Cut Short

Insert = 3 in. [75 mm]

W30 X 99

10.4 in.

[264 mm]
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Chapter 15: Problems and Fixes

15.5 Fixing Members That Are Cut Short

Insert = 3 in. [75 mm]

W30 X 99

10.4 in.

[264 mm]
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Chapter 15: Problems and Fixes

15.5 Fixing Members That Are Cut Short

Insert = flange width, not 

less than 12 in. [300 mm]

W30 X 99

10.4 in.

[264 mm]
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Chapter 15: Problems and Fixes

15.5 Fixing Members That Are Cut Short

The additional material between the two parallel 

welds accommodates weld shrinkage strains.
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How to Achieve Controlled Inelastic Deformations

• Select a ductile material

• Avoid conditions that prompt brittle fracture

(triaxial stress, constraint, notches, low 

temperatures, high strain rates)

• Encourage shear stresses

• Applied shear stress > critical shear strength

• Ensure enough material is present to create 

meaningful displacements

• Ensure movement is in a meaningful direction
239
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ANSI/AISC 358-16

An American National 

Standard

Prequalified 

Connections for 

Special and 

Intermediate Steel 

Moment Frames for 

Seismic Applications
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The Pre-Northridge Moment 

Connection

Not prequalified in ASIC 358



Bolted End Plate Moment Connection
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AISC 358-16 Prequalified Connections



Reduced Beam Section (RBS) Moment 

Connection
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AISC 358-16 Prequalified Connections



Bolted Unstiffened and Stiffened Extended End-

Plate moment connections   (BUUEP, BSEEP)
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AISC 358-16 Prequalified Connections



Bolted Flange Plate (BFP) Moment 

Connection
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AISC 358-16 Prequalified Connections



Welded Unreinforced Flange-Welded Web  

(WUF-W) Moment Connection
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AISC 358-16 Prequalified Connections



Kaiser Bolted Bracket (KBB) Moment Connection
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AISC 358-16 Prequalified Connections
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CONXTECH ® CONXLTM Moment Connection

AISC 358-16 Prequalified Connections
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SidePlate® Moment Connection

AISC 358-16 Prequalified Connections
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SidePlate® Moment Connection

AISC 358-16 Prequalified Connections
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Reduced Beam Section End Plate

Flange Plate WUF-W
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Kaiser Bracket
Connextech

SidePlate 254
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