Today's trending design concept, evolving to be tomorrow's standard design practices.
History of 3D Substation Design
Version 1.0 – 11 Years ago

Substation designed in AutoCAD (2009)

We Dedicate Ourselves to Our Clients' Success We Pursue Excellence In Our Work We Act With Integrity
» Version 1.1 – Permitting Support

Permit support created in AutoCAD (2010)

Permit support Created in Inventor (2014)
Version 1.2 - Pilot Program (2014-2015)

- Objectives
 - Evaluated Market Conditions
 - Evaluated 3D Software Packages
 - Began doing cost and time comparisons
 - Collaborated with the IT department for computer hardware requirements
 - Determined target clients
 - Developed a short form business plan
» Version 1.2 – 3D Design vs. 2D Design

We Dedicate Ourselves to Our Clients' Success We Pursue Excellence In Our Work We Act With Integrity
» Version 1.3 – What we are currently doing?
 – Started 3D Design Committee Version 2.0
 • Defining standards/processes
 • Evaluating Additional 3D Software Packages
 – Where will we take the next generation of 3D design?
Example Projects
We Dedicate Ourselves to Our Clients' Success We Pursue Excellence in Our Work We Act With Integrity
We Dedicate Ourselves to Our Clients’ Success We Pursue Excellence in Our Work We Act With Integrity
We Dedicate Ourselves to Our Clients’ Success We Pursue Excellence in Our Work We Act With Integrity
We Dedicate Ourselves to Our Clients’ Success We Pursue Excellence in Our Work We Act With Integrity
We Dedicate Ourselves to Our Clients’ Success We Pursue Excellence in Our Work We Act With Integrity
We Dedicate Ourselves to Our Clients' Success We Pursue Excellence in Our Work We Act With Integrity

Section's from 3D Model
We Dedicate Ourselves to Our Clients' Success We Pursue Excellence in Our Work We Act With Integrity
Comparison of 2D vs 3D

2D representation of an elevation view

3D isometric view extracted from a 3D model
We Dedicate Ourselves to Our Clients' Success We Pursue Excellence in Our Work We Act With Integrity

Item	Description	Qty	REV
1	305	1/2" O.D. PVC, COMPRESSION, CABLE TO 1/4" HOLE PAD	
2	306	1/4" O.D. PVC, 1/4" HOLE PAD W/ BUNG & W/ HOLE PAD W/ BUNG	
3	307	1/4" O.D. PVC, 1/4" HOLE PAD W/ BUNG, W/ HOLE PAD W/ BUNG	
4	308	3/8" CABLE TO RELAY, 3/8" O.D. PVC, TO 3/8" HOLE PAD W/ BUNG	
5	309	3/8" CABLE TO RELAY, 3/8" O.D. PVC, TO 3/8" HOLE PAD W/ BUNG	
6	310	3/8" CABLE TO RELAY, 3/8" O.D. PVC, TO 3/8" HOLE PAD W/ BUNG	
7	311	3/8" CABLE TO RELAY, 3/8" O.D. PVC, TO 3/8" HOLE PAD W/ BUNG	
8	312	3/8" CABLE TO RELAY, 3/8" O.D. PVC, TO 3/8" HOLE PAD W/ BUNG	
9	313	3/8" CABLE TO RELAY, 3/8" O.D. PVC, TO 3/8" HOLE PAD W/ BUNG	
10	314	3/8" CABLE TO RELAY, 3/8" O.D. PVC, TO 3/8" HOLE PAD W/ BUNG	
11	315	3/8" CABLE TO RELAY, 3/8" O.D. PVC, TO 3/8" HOLE PAD W/ BUNG	
12	316	3/8" CABLE TO RELAY, 3/8" O.D. PVC, TO 3/8" HOLE PAD W/ BUNG	
13	317	3/8" CABLE TO RELAY, 3/8" O.D. PVC, TO 3/8" HOLE PAD W/ BUNG	

Note: Dimensions, quantities, and descriptions are not fully visible or legible in the provided image.
• Permitting Process
• Design Accuracy
 • Sections/Elevations
 • Details
 • Steel Design
• On-site Construction Aid
• Clearance Checks
• Auto-populated bill of materials
• Increased efficiency
• Single file contains the full design
 • Changes will automatically be reflected across all drawings
• Accurate bidding process
• WOW factor
• Proper workflow
• 3D Vendor Equipment
 • Format
 • File Size
 • Availability
• Training
• Industry knowledge
• Templates
• Drafting Standards
• Record Drawings
• Library – 3D file storage
• Autodesk Inventor 2019
• Substation Design Suite (Spatial Business Systems)
• Bluebeam Revu 2019
• BIM for Substations
 • Links within the models and drawings
 • Real-time data for substation equipment
 • On-site photo links
 • Vendor drawing links
 • Future possibilities are endless!?!?
3D SUBSTATIONS
Design & Construction
Presented by: Ryan Brorby, P.E.
3D Substation Construction
Overview

- Permitting Process
 - 3D renderings
- Design
 - Drawing creation
- Construction
 - Utilizing 3D
- Post Construction
 - 3D as-built drawings
Permitting Process: 3D Renderings

Benefits of 3D

- Local governments
 - Provides visual of final product
 - Offers better communication
 - More efficient (faster approvals)
- Urban designs
- Community members
 - Neighbors
Rendering Example
3D Construction

Why 3D construction?

- Successes on design/permitting side
- Involvement of operations in 3D
- Potential Efficiencies
 - Work order packages
 - Deliverables
 - Construction
Software Considerations

Autodesk Inventor (Minnkota)
- 3D design

Navisworks
- Printing to PDF

Bluebeam (PDF Viewer)
- 3D construction prints
 - 3D model
 - Material list

Autodesk BIM 360
- PDF Viewer
- Additional Cost
- Cloud-based
 - Security concerns
- Widely used in commercial building industry
Hardware Considerations

Mobile Devices for Field Use
- Microsoft Surface (Minnkota)
 - Mobile
 - Touch screen
 - Reduced size
 - No keyboard necessary
 - Acts as laptop for additional uses
- Traditional Laptop
 - Reduced “mobility” on-site
 - No touch screen
 - Plenty of memory

iPad
- Bluebeam constraints
 - Memory limitations
- Loading 3D image
 - Viewer only
3D Design Example on Field Device
Design and Build

Utilizing 3D PDF in field

- Zoom and rotate Image
 - Visually see any section cut
- Equipment & material
 - Additional information
 - Suppliers
 - Ratings
 - Inventory numbers
 - PO numbers
 - Delivery dates
Material

Substation material list
- Use as reference from 3D PDF material items
- Material list created directly from Inventor software
- Includes part numbers
- Improves accuracy of material needed including quantities
Bringing Changes Back to the Office

- As-built drawings
 - Field staff can update easily using mobile device
 - Offers real-time changes
 - Engineering and Operations can both access and review modifications
 - Improves communication
 - Easier to show in a 3D model
Quick update to show different wire
Construction As-Built Example
Pros and Cons of Using Bluebeam for As-Built Drawings

Pros:
- Ease of use
- Cost
- Immediate feedback from the field
- Ability to rotate/manipulate model (compatible with CAD)
- Response time is reduced
- Savings due to increased accuracy of markups

Cons:
- Accessibility of data (Wifi)
- Tools must be supported (IT)
- Lack of technical savvy
- Additional training is required (crews)
3D Construction
Before & After
3D Construction
Before & After
Design versus Build: Easy to Convey

Conceptual Design

After Construction
3D Construction Lessons Learned

- Mobile device (Surface)
 - Additional memory
 - Files can get large
 - Slow-moving image (rotating)
- Cleaning up metadata in Bluebeam
 - Reducing info (coordinates)
 - Transferring material info to metadata in Bluebeam

- Dimensioning
 - Bus, phase spacings, foundations, etc.
 - Utilize 2D preset views
- Suppliers 3D files
 - Can be too large
 - Too detailed
3D Construction Lessons Learned

- Drawings
 - Bulky paper prints gone
- Ease of drawing access
 - Able to bring mobile device on structures, equipment, bucket truck, import pictures, etc.
- Less questions to foreman
 - Workers better see what’s going on
 - Seeing actual image
- Material/equipment
 - More information
 - Sky’s the limit
- As-builts
 - Cleaner (no coffee stains)
 - Real time changes (both directions)
- Vendor 3D files
 - More readily available
3D Construction: Investment for the Future?

Initial consideration for going with 3D includes:

- Software and training
- Hardware for crews/engineers
- Ongoing training
- Increased design time initially – 3D drawings take time. Reduced in future (baseline/library)
- Consultants
- I.T. buy-in and support
Future Considerations

- Below grade construction
 - Grounding
 - Cabling
 - Foundations
 - Piers
 - Slabs
- Transmission line
 - PLS CADD is the equivalent for lines
 - Substation tap structures
- Control house layout
 - Cabinets
 - Lighting
 - Panels
 - Wiring prints
- Project planning
 - Better planning estimates
In Conclusion

- Minnkota sees benefits to continue
 - More to come
- Invest in better mobile devices
- More training (crews)
- Involve more groups at MPC
 - Provide more value using 3D
Questions or Comments?