Distribution Switchgear Philosophies - Deadfront vs. Livefront

Michael Renman

Xcel Energy
Electric Distribution

Standards

Neil Stiller
Rochester Public Utilities
Maintenance &
Construction

PANEL – DISTRIBUTION SWITCHGEAR PHILOSOPHIES: DEAD-FRONT VS. LIVE FRONT

Minnesota Power Systems Conference – November 4, 2020 Jared Newton, P.E.

ABOUT CONNEXUS ENERGY

your most powerful membership™

SWITCHGEAR AT CONNEXUS ENERGY

Today we have ~450 switchgear

- 3 phase systems....
- 449 livefront, 1 deadfront
- Mostly 600 Amp rated switches
- Mostly S&C
- Oldest on the system from the late '70s

Reliability

- Animal and vegetation outages
- 3 year history
 - 7 mouse outages (6 momentary)
 - 1 vegetation outage
- Reclosing on fully underground circuits

your most powerful membership™

your most powerful membership™

your most powerful membership $^{\scriptscriptstyle{\text{TM}}}$

CONCERNS ABOUT MAKING THE CHANGE

Processes and procedures including safety rules

- Safety rules
- Operating procedures
- New elbows

How to replace damaged gear

- Is there enough cable for the elbow to reach
- Doesn't fit on the same basement

PATH FORWARD

- Starting in 2021 all new switchgear will be deadfront
- No plan to buy new livefront switchgear
 - Refurbish a few as they come in from the field for spares
- Damaged switchgear to be replaced with deadfront switchgear
- Eventually develop a program to proactively replace livefront switchgear with deadfront.

Fully Regulated and Vertically Integrated

Four

Operating Companies

Eight

States

3.6 Million Electric Customers

2.0 Million

Natural Gas Customers

\$30 Billion

2019 Est. Rate Base

19 GW

Owned Gen. Capacity

11,000+

Employees

Northern States Power Minnesota (NSPM)

Minnesota, South Dakota, North Dakota

- 2019E Rate Base: \$11.2 billion
- 2018 Ongoing EPS: \$0.96
- 2020-2024 Cap Ex: \$8.9 billion

Northern States Power Wisconsin (NSPW)

Wisconsin, Michigan

- 2019E Rate Base: \$1.7 billion
- 2018 Ongoing EPS: \$0.19
- 2020-2024 Cap Ex: \$1.7 billion

Public Service Company of Colorado (PSCo) Colorado

- 2019E Rate Base: \$12.4 billion
- 2018 Ongoing EPS: \$1.08
- 2020-2024 Cap Ex: \$7.7 billion

Southwestern Public Service (SPS)

Texas, New Mexico

- 2019E Rate Base: \$4.9 billion
- 2018 Ongoing EPS: \$0.42
- 2020-2024 Cap Ex: \$3.8 billion

Xcel Energy Distribution System Stats

- 47,408 Overhead Distribution Circuit Miles
 - MN,ND,SD 14,954 Miles
- 28,703 Underground Distribution Circuit Miles
 - MN,ND,SD 11,706 Miles
- 2,937 Feeders
- Padmount Switchgear
 - 15kV & 25kV Mostly live-front S&C
 - 35kV Deadfront Mostly Cooper/Eaton VFI

Wildlife Outages

- Average 7 animal related outages per year in our Minnesota service area
- Average 17 animal related outages per year in our Colorado service area

Faults During Fuse Switching

Xcel Energy discontinued the field practice of fault finding with fuses in 2014 and has experienced a major reduction in faults during switching

System Constraints

- Existing system has many installations with feeder cables double-lugged
- 650 amp rated gear where extra capacity is required.
- Many areas with limited experience terminating 600 amp elbows
- Often limited cable slack available

35kV Deadfront Fault Example

New 35kV Source Transfer Gear

Distribution Switchgear Philosophies Deadfront vs. Livefront

Rochester Public Utilities

Padmounted Switchgear History and Present **Applications**

2020 MIPSYCON

Rochester Public Utilities (RPU)

- Minnesota's largest municipal utility
 - 826 miles of 13.8 kV distribution system
 - 524 miles of underground primary (63%)
 - 66 sq. miles of municipal service territory
 - 56,400 electric customers
- 69 padmounted units and 9 submersible units in service
- 1 4 installed per year

Prior to 1996 RPU exclusively used Cooper RVAC and MOST oil-filled dead-front switches.

&

Trayer oil-filled switches installed in below-grade vaults.

Both designs used the same fuses

Combined Technologies SX Limiter or Cooper ELSP fuse

- Mostly used the 200 amp single barrel
- Current-limiting element in series with an expulsion element

Expulsion element operation contaminates the oil – overtime this requires oil filtration or refill.

Principle Disadvantages of Oil-filled switches

- Expensive switch and concrete foundation
- Costly fuses
- Oil maintenance filtration / refill
- Fuse TCC curve choice was limited
- Absence of visible open switch contacts *
- Leaking oil in aged units
- Internal switch faults were catastrophic due to arc under oil producing dangerous gases. *

- Cooper RVAC
- 5 kA arc fault, one reclose
- Initial fault was at the cable terminators
- Tremendous fault forces caused massive internal damage and internal fault
- Tank ruptured and approx. 300 gallons oil spilled

- Cooper RVAC
- 5 kA arc fault, one reclose
- Initial fault was at the cable terminators
- Tremendous fault forces caused massive internal damage and internal fault
- Tank ruptured and approx. 300 gallons oil spilled

- Cooper RVAC
- 5 kA arc fault, one reclose
- Initial fault was at the cable terminators
- Tremendous fault forces caused massive internal damage and internal fault
- Tank ruptured and approx. 300 gallons oil spilled

- Cooper RVAC
- 5 kA arc fault, one reclose
- Initial fault was at the cable terminators
- Tremendous fault forces caused massive internal damage and internal fault
- Tank ruptured and approx. 300 gallons oil spilled

- Cooper RVAC
- 5 kA arc fault, one reclose
- Initial fault was at the cable terminators
- Tremendous fault forces caused massive internal damage and internal fault
- Tank ruptured and approx. 300 gallons oil spilled

Proponents for Change

- Readily viewable visible open switches
- Some improvement in fuse TCC curve choices
- Less expensive overall switch installation
- No oil to maintain or leak
- Avoid SF₆ regulatory issues
- Easier and cheaper cable termination

Switchgear Choices mid 2000's

Air Insulated Live-Front

- RPU linemen had a strong distaste for live-front transformers, but initially were accepting of live-front switches because of the shortcomings of the older existing units.
- Live-front switches developed a negative history due to rodent ingress and tight component clearances.
- Rigging to pull cable into some padmount switch designs identified other issues.

Adverse Experiences

Air Insulated Live-Front

- Some failures due to animals burrowing into the basement and then climbing upwards into the energized parts.
- New MNDOT road salts are applied as liquid these corrosive materials seem to be more airborne and migrate easily throughout the cabinet spaces.

Present Design Change Approach

RPU evaluated three dead-front switch types

- Focused on field constructability and reliability features
 - Preference for fuses vs. electronic tripping
 - Shutters and internal fuse mount features
 - Cable pull-in access
 - Solid-dielectric components when available, but these have premium costs

Present Design Change Approach

- Shutters and internal fuse mount features
- Component or Switch viewing windows

Other Application Issues

- Air-insulated and dead-front equipment require a 15% -20% larger footprint.
 - Difficult in city center areas due to very congested real estate.
 - Size mismatch complicates replacement when old equipment used concrete foundations.
- Perceived safety
 - Pulling cable into a de-energized switch bay
 - Access while inserting and removing fuses

Other Application Issues

 City core real estate issues may require a solid-dielectric compact design

 Suburban areas allow some space flexibility, so a second solution is allowed.

