Transmission Lessons Learned from the Decarbonization of Minnesota's North Shore

Christian Winter – Minnesota Power Minnesota Power Systems Conference November 13, 2019

AN ALLETE COMPANY

Overview

- Background
- Issues
 - Voltage Support & System Strength
 - Power Delivery Capability
 - Redundancy
- Summary

What is the North Shore Loop?

Transmission Impacts from Fleet Transition

Voltage Support & System Strength

• Power Delivery Capability

• Redundancy

Transmission Impacts from Fleet Transition

- Voltage Support & System Strength
 - Steady state voltage regulation
 - Dynamic reactive support (Voltage Stability, Damping)
 - Short circuit capability
- Power Delivery Capability

Redundancy

Illustration: Voltage Support

Imagine the power system in Minnesota being supported by columns, representing baseload generators that supply voltage support and system strength.

CONCLUSION: *Voltage Support & System Strength* presently provided by baseload generators needs to be retained or replaced. Location matters.

6

North Shore Loop Reactive Resources (2014)

North Shore Loop Reactive Resources (2015)

North Shore Loop Reactive Resources (2016)

Taconite Harbor Voltage Regulation (2016)

North Shore Loop Reactive Resources (2017)

North Shore Loop Reactive Resources (2019)

Taconite Harbor Voltage Regulation (2019)

Silver Bay Voltage Regulation (2019)

14

North Shore Loop Voltage Stability

North Shore Loop Reactive Resources (2020+)

Transmission Impacts from Fleet Transition

- Voltage Support & System Strength
 - Steady state voltage regulation
 - Dynamic reactive support (Voltage Stability, Damping)
 - Short circuit capability
- Power Delivery Capability
 - Increased reliance on external sources
 - Increased power flow on incoming transmission lines
- Redundancy

Illustration: Power Delivery Capability

Power Provided by Baseload Generators

Increased Reliance on External Sources

Strengthening the Forbes Source

Forbes: Critical Contingency

AN ALLETE COMPANY

Solution: Forbes Transformer Addition

PROBLEM SOLVED:

- Re-establish a second 230/115 kV transformer at Forbes
- NOW the connection between 230 kV and 115 kV remains intact
- ALSO adds muchneeded transformer capacity to support increased reliance on 230/115 kV connection

Forbes: Critical Contingency (Pre-Project)

AN ALLETE COMPANY

Forbes: Critical Contingency (Post-Project)

Strengthening the Minntac Source

Minntac: Critical Contingency

AN ALLETE COMPANY

Solution: Minntac Bus Reconfiguration

PROBLEM SOLVED:

- Add 3 new breakers & replace the existing breaker with a newer one
- Expand the Minntac 230 kV bus into a more reliable "ring" bus
- Relocate a transmission line to a different position on the bus
- NOW for any single breaker failure, one transmission line and one 230/115 kV transformer are still connected

Minntac: Critical Contingency (Pre-Project)

AN ALLETE COMPANY

Minntac: Critical Contingency (Post-Project)

Increased Flow on Incoming Lines

Transmission Impacts from Fleet Transition

- Voltage Support & System Strength
 - Steady state voltage regulation
 - Dynamic reactive support (Voltage Stability, Damping)
 - Short circuit capability
- Power Delivery Capability
 - Increased reliance on 230/115 kV Sources
 - Increased power flow on 115 kV system
- Redundancy
 - Fewer sources available in the area
 - Limited options for mitigating issues

Redundancy: Hoyt Lakes End

Mesaba Junction 115 kV Project

Redundancy: Duluth End

Duluth 115 kV Loop Solution Alternatives

North Shore Loop Transmission Projects

