Benefits of a Cooling Tower VFD Retrofit

Greg Øwen Electrical Engineer

AME RIVER STATION

Ryan Carlson

Electrical BURNS MSDONNELL

54th Annual MIPSYCON Conference November 7, 2018

Agenda

- Project Introduction
- Project Development & Justification
- Key Decisions
- Installation Overview
- Control Scheme Modifications
- Results
- Additional Benefit
- Final Thoughts

Project Introduction

- Laramie River Station
- Located in Wheatland, WY
- ► 3 570MW units (1980, 1981, & 1982)
- Two cooling towers for each unit
- Each tower has 12 150HP 2 speed fans
- Fans were powered by two speed starters in MCCs.
- Hardwired control scheme from the plant DCS.
- Operators were responsible for determining fan operating speeds.

Project Introduction – One Line Diagram

Project Justification

Reliability

- Cable faults become a frequent occurrence
- Electrical equipment at end of service life
- Maintenance Problems
 - Gearbox Failures
 - Driveshaft Failures
- ► Efficiency
 - Would any cost savings be realized?
 - Would an improved control scheme offer savings?

Project Justification – Do VFD Cost Savings Exist?

- Information comparing power usage prior to and after a 2 speed starter to VFD retrofit was not available to BMcD and Basin.
- VFD applications have additional considerations:
 - HVAC Equipment
 - Harmonics
 - Existing Motor Compatibility
 - Fan & Gearbox Minimum Speeds
- VFDs were more expensive than the two speed starter solution

Project Justification - Efficiency

Horsepower is proportional to the cube of speed

$$\frac{HP_2}{HP_1} = \left(\frac{Speed_2}{Speed_1}\right)^3$$

Speed and flow are related by the fan curve

Project Justification - Efficiency

Many factors impact the outlet water temperature.

- The cooling performance curve for a tower will look different depending on the conditions.
- A relationship between outlet water temperature and fan speed, excluding other environmental factors is not attainable.

Horsepower Comparison of Different Motor Configurations

Decision Point

VFD efficiency must be examined at different loading conditions

VFD efficiency will vary from manufacturer to manufacturer

VFD Efficiency by Fan Speed

Fan Speed	58%	62%	73%	79%	84%	90%	93%	100%
60 HP	99%	99%	98%	98%	98%	98%	97%	97%
200 HP	97%	97%	98%	98%	98%	97%	97%	97%

Source: Siemens (2017)

Decision Point

Variable Frequency Drives

- Mechanic's made a case that VFD's would save on maintenance
- Control Scheme Typology Redesign Required
- Additional Considerations
 - HVAC Equipment
 - Harmonics
 - Existing Motor Compatibility
- VFDs were more expensive than the two speed starter solution
 - Approximately 30% More Expensive + Cost of Harmonic Filters

Installation Overview

- Major Equipment In The Project
- Eaton Magnum DS Arc Resistant 480V Load Centers
- Rockwell Allen Bradley Arc Shield Motor Control Centers
 - Powerflex 753 VFD & Passive Filter
- Trane 30 Ton HVAC Units

Installation Overview

Control Scheme

Emerson Ovation DCS System

- Existing 2 speed starters were hardwired to the DCS
- Variable Frequency Drives Required:
 - Run command
 - Speed reference
 - Direction Command
 - Feedback Speed, Direction, Alarms, etc.
 - Logic to determine the speed reference
 - New Graphics
- Implemented datalink control from the DCS DeviceNet & DCS – Modbus

Control Scheme

Speed Reference Based On:

- Circulating Water Temperature
- Designed as a PID loop with circulating water temperature as the process variable
- Provided operators with the ability to bias the target setpoint -10 to +20 degrees
- De-Icing sequence utilized the VFD's in reverse at 50% speed
- Speed limited between 30% and 90%
 - Based on advice from the VFD manufacturer for a 90%-30% speed limit when using non-VFD rated motors.
 - At low speeds some gearboxes may lack adequate lubrication.

Graphics

TG WA	TER FUEL BAG	MISC COAL COOLING TWRS ALL	COOLING TOWER 1B TWR FIRE				UCC
05/16/17		C	COOLING TOWER 1A				08:39:11
1A-CWP TRENDS	1B-CWP TRENDS				STATUS	DEMAND	DE-ICE TIME REMAINING
INCINOS	Inches		START 1A1-1A6	1A1	A FORWARD		73 PCT = 30:00
1A CIRC PUM STATUS	P 1B CIRC PUMP STATUS	CTRC WATER PH CONTROL	STOP 1A1-1A6	1A2	A FORWARD		73 PCT = 30:00
UPR BRG TEN				1A3	A FORWARD		73 PCT 30:00
133.9BDEGF		MOV 1S-233A (MCC C1B1 7	יי נו	1A4	A FORWARD		73 PCT = 30:00
LWR BRG TEM	IP LWR BRG TEMP	CLOSE MAKE	UP	1A5	A FORWARD		73 PCT 30:00
106.1 DEGF	128.0 DEGF			1A6	A FORWARD		73 PCT = 30:00
THRUST TEM	P THRUST TEMP		START 1A7-1A12	1A7	A FORWARD		73 PCT = 30:00
146.2 B DEGF 😑	146.1 DEGF		STOP 1A7-1A12	1A8	A FORWARD		73 PCT = 30:00
STATOR TEM	P STATOR TEMP			1A9	A FORWARD		73 PCT = 30:00
-21.6BDEGC	110.1 DEGC			1A10	A FORWARD		73 PCT = 30:00
MOTOR AMPS	MOTOR AMPS		START 1A1-1A12	1A11	A FORWARD		73 PCT = 30:00
265.0 AMPS	252.4 AMPS		STOP 1A1-1A12	1A12	A FORWARD		73 PCT 30:00
SEAI	L WTR FLOW			TOWE			
U1CWLS1A	27.33 GPM J1CWLS1A U1CWLS1B	U1CWLS1B		TNUET			
-				INLET	ACT1	VE	
• • • • • • • • • • • • • • • • • • •	OPENED	OPENED					
RUNNING	RUNNING						0 10 11 12
				RIS	2 3 4 5 SER		
				92.32			2 93.17 DEGF
113.0 TNCH	114.3 TNCH 115.9 TM	CH			CTED		
PH 7.52 DH							FLUME LVL & PH TRND
111 7.32 Ph					CLOSED		
	AMBIENT TEMP 55.81 DE	CW HVAC FAN 2	STOPPED ALARM FAULT		FROM PLANT		1M-COA-TOWER1A
BLR FLW W/MW	MW TP 200	- PSIG AIR - KLBH 0 02.4 3300.4 3	XYGEN FUEL - TPH .403 220.18	FP - IN	WC DRUM LVL- O O.272	IN OFA TO 2 748.0	TALBACK PRESSDO2.34

Control Scheme Lessons Learned

VFDs would trip shortly after start command due to high DC bus voltage

- Passive filter capacitors boosted voltage too much, <u>solved by adding a contactor to close in</u> <u>capacitors at >50% speed.</u>
- Also, no load current draw of capacitors was ~60A, resulting in large reactive current load

Control Scheme Lessons Learned

Emerson and Rockwell service engineers putting their heads together!

- DeviceNet Communication Issues
 - Communication from DCS to VFDs occasionally would go down for a brief instance
 - Loss of feedback would reject controls to manual and flood alarm screen
 - Could not correlate to any specific load condition or operational scenario
 - Using 125k baud rate, low number of devices per segment (<15), no bus errors detected
 - Revised DeviceNet power supply wiring, tried different media converters...no effect
 - Solved by changing DCS scan time from 4/sec to 2/sec
 - Allowed more time for end devices to receive commands and send responses
 - Recommend having DeviceNet meter for troubleshooting

Motor Reversing in Cold Weather

Commissioning of VFDs took place in summer months, no issues running in reverse

- During cold weather, not able to start VFDs in reverse to de-ice the towers
 - Trip on Input Phase Loss (protects drive capacitors from excessive DC bus ripple)
 - Attempted raising threshold of parameter in VFD, limited success
 - Removed trip based on this parameter, Rockwell had concerns
 - Other plant in ND having similar issues after VFD retrofit, provided parameters to investigate
 - Recommended tuning VFDs for high inertia loads
 - After tuning VFDs, all fans able to start in reverse during cold weather

PowerFlex 750-Series AC Drives

#	Parameter	Setting
377	Bus Limit Kd	= 0
378	Bus Limit ACF	R Ki = 650
463	Input Ph Leve	el = 15000
621	Slip RPM at F	LA = 0
535	Accel Time 1	= 60
537	Decel Time 1	= 180

Results – Maintenance Savings

Primary Cost Drivers:

- Gearbox & Drive System Repairs
- Occasional Expected Motor Replacement

Summary:

- Average Annual Maintenance Expenditure 2 Speed \$289,641
- Average Annual Maintenance Expenditure VFD \$74,134
- Average Annual Savings \$215,507 (74%) per Unit

Unit 1 Cooling Tower KVA Power Consumption 2014 – 2018

3500

Energy Savings

- Unit 1: 434 KVA ≈ 20%
- Unit 2: 527 KVA ≈ 23%
- Unit 3: 520 KVA ≈ 21%
- Applying 0.8 Power Factor To The Average KVA above yields approximately 400kW of aux power savings for each unit.
- To estimate the monetary value of the energy savings, use approximately 20% of your cooling tower auxiliary power load.

Additional Benefit – Arc Flash Incident Energy Level

Reduction in incident energy on the line side of the main breakers via the implementation of a new differential relay.

Before Retrofit: 34 cal/cm2

After Retrofit: 5.6 cal/cm2

Final Thoughts

Motor reliability concerns have not materialized in this installation

- HVAC requirements can be substantial when working with a large number of VFDs
- We have seen quantifiable energy savings provided by the VFD and control scheme.
- VFD parameters may require tuning to operate successfully in all ambient conditions.
- The DeviceNet & Modbus datalink control scheme via the Emerson Ovation DCS required troubleshooting, but eventually worked as we desired.

Special Thanks:

► The following companies assisted with the development of this presentation:

- Rockwell Automation
- Siemens
- BTU Company
- Research Cottrell Cooling

Questions?

Ryan Carlson Electrical Engineer Burns & McDonnell, Energy Phone: 816-822-4358 Email: rccarlson@burnsmcd.com

Greg Owen Electrical Engineer Basin Electric Power Cooperative Phone: 701-557-5138 Email: gowen@bepc.com