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►Laramie River Station
►Located in Wheatland, WY
►3 – 570MW units (1980, 1981, & 1982)
►Two cooling towers for each unit
►Each tower has 12 – 150HP 2 speed fans
►Fans were powered by two speed starters in MCCs.
►Hardwired control scheme from the plant DCS.
►Operators were responsible for determining fan operating speeds.

Project Introduction



Project Introduction – One Line Diagram



►Reliability
• Cable faults become a frequent occurrence

• Electrical equipment at end of service life

►Maintenance Problems
• Gearbox Failures

• Driveshaft Failures

►Efficiency
• Would any cost savings be realized?

• Would an improved control scheme offer savings?

Project Justification



► Information comparing power usage prior to and after a 2 speed starter to 
VFD retrofit was not available to BMcD and Basin.

►VFD applications have additional considerations:
• HVAC Equipment

• Harmonics

• Existing Motor Compatibility

• Fan & Gearbox Minimum Speeds

►VFDs were more expensive than the two speed starter solution

Project Justification – Do VFD Cost Savings Exist?



►Horsepower is proportional to the 
cube of speed

►Speed and flow are related by the fan 
curve

Project Justification - Efficiency
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►Many factors impact the outlet water temperature.
►The cooling performance curve for a tower will look different depending on 

the conditions.
►A relationship between outlet water temperature and fan speed, excluding 

other environmental factors is not attainable.

Project Justification - Efficiency



Horsepower Comparison of Different Motor Configurations

Number of Fans In Service At Full Speed
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►VFD efficiency must be examined at different loading conditions
►VFD efficiency will vary from manufacturer to manufacturer

Decision Point

Fan Speed 58% 62% 73% 79% 84% 90% 93% 100%

60 HP 99% 99% 98% 98% 98% 98% 97% 97%

200 HP 97% 97% 98% 98% 98% 97% 97% 97%

VFD Efficiency by Fan Speed

Source: Siemens (2017)



►Variable Frequency Drives
• Mechanic’s made a case that VFD’s would save on maintenance

►Control Scheme Typology Redesign Required
►Additional Considerations

• HVAC Equipment

• Harmonics

• Existing Motor Compatibility

►VFDs were more expensive than the two speed starter solution
• Approximately 30% More Expensive + Cost of Harmonic Filters

Decision Point



►Major Equipment In The Project
►Eaton Magnum DS Arc Resistant 

480V Load Centers
►Rockwell Allen Bradley Arc Shield 

Motor Control Centers
• Powerflex 753 VFD & Passive 

Filter
►Trane 30 Ton HVAC Units

Installation Overview



Installation Overview



►Emerson Ovation DCS System
• Existing 2 speed starters were hardwired to the DCS

►Variable Frequency Drives Required:
• Run command

• Speed reference

• Direction Command

• Feedback – Speed, Direction, Alarms, etc.

• Logic to determine the speed reference

• New Graphics

► Implemented datalink control from the DCS –
DeviceNet & DCS – Modbus

Control Scheme



►Speed Reference Based On:
• Circulating Water Temperature

• Designed as a PID loop with circulating water temperature as the 
process variable

• Provided operators with the ability to bias the target setpoint -10 to 
+20 degrees

►De-Icing sequence utilized the VFD’s in reverse at 
50% speed

►Speed limited between 30% and 90%
• Based on advice from the VFD manufacturer for a 90%-30% 

speed limit when using non-VFD rated motors.

• At low speeds some gearboxes may lack adequate lubrication. 

Control Scheme



Graphics



► VFDs would trip shortly after start command due to high DC bus voltage
• Passive filter capacitors boosted voltage too much, solved by adding a contactor to close in 

capacitors at >50% speed.
• Also, no load current draw of capacitors was ~60A, resulting in large reactive current load

Control Scheme Lessons Learned



► DeviceNet Communication Issues
• Communication from DCS to VFDs occasionally would go down for a brief instance

• Loss of feedback would reject controls to manual and flood alarm screen

• Could not correlate to any specific load condition or operational scenario

• Using 125k baud rate, low number of devices per segment (<15), no bus errors detected

• Revised DeviceNet power supply wiring, tried different media converters…no effect

• Solved by changing DCS scan time from 4/sec to 2/sec
 Allowed more time for end devices to receive commands and send responses

• Recommend having DeviceNet meter for troubleshooting

Control Scheme Lessons Learned
Emerson and Rockwell 
service engineers putting 
their heads together!



► Commissioning of VFDs took place in summer months, no issues running in reverse

► During cold weather, not able to start VFDs in reverse to de-ice the towers
• Trip on Input Phase Loss (protects drive capacitors from excessive DC bus ripple)

• Attempted raising threshold of parameter in VFD, limited success

• Removed trip based on this parameter, Rockwell had concerns

• Other plant in ND having similar issues after VFD retrofit, provided parameters to investigate

• Recommended tuning VFDs for high inertia loads

• After tuning VFDs, all fans able to start in reverse during cold weather

Motor Reversing in Cold Weather

#       Parameter       Setting
377 Bus Limit Kd = 0
378 Bus Limit ACR Ki = 650
463  Input Ph Level = 15000
621 Slip RPM at FLA = 0
535 Accel Time 1 = 60
537 Decel Time 1 = 180



Primary Cost Drivers:
►Gearbox & Drive System Repairs
►Occasional Expected Motor Replacement

Summary:
►Average Annual Maintenance Expenditure - 2 Speed $289,641
►Average Annual Maintenance Expenditure – VFD $74,134
►Average Annual Savings $215,507 ( 74%) per Unit

Results – Maintenance Savings



Results – Energy Savings
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Results – Energy Savings
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Results – Energy Savings
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►Energy Savings
• Unit 1: 434 KVA ≈ 20%
• Unit 2: 527 KVA ≈ 23%
• Unit 3: 520 KVA ≈ 21%

►Applying 0.8 Power Factor To The Average KVA above yields 
approximately 400kW of aux power savings for each unit.

►To estimate the monetary value of the energy savings, use 
approximately 20% of your cooling tower auxiliary power load.

Results – Energy Savings



►Reduction in incident energy on the 
line side of the main breakers via the 
implementation of a new differential 
relay.

►Before Retrofit: 34 cal/cm2

►After Retrofit: 5.6 cal/cm2

Additional Benefit – Arc Flash Incident Energy Level



►Motor reliability concerns have not materialized in this installation
►HVAC requirements can be substantial when working with a large number of 

VFDs
►We have seen quantifiable energy savings provided by the VFD and control 

scheme. 
►VFD parameters may require tuning to operate successfully in all ambient 

conditions.
►The DeviceNet & Modbus datalink control scheme via the Emerson Ovation 

DCS required troubleshooting, but eventually worked as we desired.

Final Thoughts



►The following companies assisted with the development of this presentation:
• Rockwell Automation

• Siemens

• BTU Company

• Research Cottrell Cooling

Special Thanks:



Questions?

Ryan Carlson 
Electrical Engineer 
Burns & McDonnell, Energy 
Phone: 816-822-4358
Email: rccarlson@burnsmcd.com

Greg Owen
Electrical Engineer
Basin Electric Power Cooperative
Phone: 701-557-5138
Email: gowen@bepc.com
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