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Definitions 
• CAPC = Capacitor Control  

• REGC = Regulator Control   

• LTCC = Load Tapchanging Transformer Control (2001D) 

• OLTC = On Load Tapchanger (REG and PWR XFRM) 

• FPF = Forward Power Flow 

• RPF = Reverse Power Flow 

• VVO= Volt/VAR Optimization 

• CVR = Conservation Voltage Reduction  

• CVRfactor =  P /  V  (0.5 typ., >1,0 is excellent) 

• DA = Distribution Automation 

• EOL = End of Line, as in EOL Voltage 

• Reconfig = System Reconfiguration 

• ADVVOC = Advanced Distribution Volt/VAR Controller 
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Exploration 

 1547a and the New 1547  

 Active VAR regulation by DER 

VVO Issues: 

 Line drop compensation (LDC), R and XL, or Z 

 VAR-Bias vs. LDC for control of Active VAR DER 

 LDC issues with reverse power flow 

 Reverse power flow control modes for On-Load tapchanging 
Elements  (OLTC = LTC Transformers and Substation 
Regulators) 

 Inverse time vs. fixed delay for OLTC Elements 
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Exploration 
 Substation Protection Issues: 

 Radial vs. Bidirectional Fault Current Flows 
• Out-of-section (sympathy) trip concerns and mitigation  

• Remote interrupter failure protection 

 Reclosing treatment : 
• Increase of 1st Shot Time Delay (from instantaneous) 

• Adaptive protection with voltage control of reclosing 

 Ferroresonance on load side of feeder CBs 

 Ungrounded fault backfeed into transmission protection  
• High side delta winding issue 

• Summary and Q&A 
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DER Impact on VVO 

DER is proliferating 
 Powerflows and levels change, resulting in voltage changes 

 Placement of DER can change due to DA 

 IEEE 1547a, and soon-to-be  approved IEEE 1547-2017 (?), 
allow reactive as well as active powerflow output, 
compounding the problem 
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1547A (2014):  Active Voltage/VAR Control 

• Coordination and approval of the area EPS and DR 
operators shall be required for the DR to actively 
participate to regulate the voltage by changes of real 
and reactive power.  

 

• The DR shall not cause the Area EPS service voltage 
at other Local EPSs to go outside the requirements of 
ANSI C84.1-2006, Range A. 
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• If large amounts of DER are easily “shaken off” for transient  
out-of-section faults, voltage and power flow upset can occur in: 

– Feeders 

– Substations 

– Transmission 

• Fault ride-through capability makes the system more stable 

– Distribution:  Having large amounts of DER “shaken off” for transient 
events suddenly upsets loadflow and attendant voltage drops  

• Impacts include unnecessary LTC, regulator and capacitor control 
switching 

• If amount of DER shaken off is large enough, voltage limits  
may be violated 

– Transmission:  Having large amounts of DER “shaken off” for transient 
events may upset loadflow into transmission impacting voltage, VAR 
flow and stability 

 

 

IEEE 1547 Addendum:  IEEE 1547a 
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ANSI C84.1-2006 

Standard for Electric Power Systems 
and Equipment – Voltage Ratings 

• Range A is the optimal 
voltage range  

• Range B is acceptable, but 
not optimal 
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VVO Concepts VVO Concepts   

and DER Issuesand DER Issues  

•• What is VVO?What is VVO?  
•• How do you obtain it?How do you obtain it?  
•• CVR and what do you get out of itCVR and what do you get out of it  
•• How DER can cause control issues How DER can cause control issues 

with VVO and CVRwith VVO and CVR  
•• What to do about itWhat to do about it  
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VVO 
 Adjusting system voltage and pf by properly controlling 

OLTC and reactive assets.  Ideally: 

 OLTC Assets used for Voltage Issues due to Real Power Changes 
• Load Tapchanging Transformer Controls (Substation) 

• Voltage Regulator Controls (Substation and Line) 

 Reactive Assets used for VAR regulation (loss minimization) 

 Reactive Assets used for Voltage Issues due to Reactive Power 
Changes 

• Capacitors (Line) 

• Active VAR Regulating DER (new) 
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VVO Controllers 
 LTC Controls (Load Tapchanger)  
 Applied on LTC Transformers in Substations 

 Control voltage 

 Regulator Controls  

 Applied on Regulators 
o Substation and Line 

 Control voltage 

 Capacitor Controls  

 Applied on Pole Top Capacitor Banks 

 Provide VARs and influence voltage 

 We’ll explore some advanced applications 

Advanced Volt/VAR Optimization Controllers = ADVVOC 
12 

MIPSYCON 2017 



126 

120 

114 

1 2 3 4 5 6 7 8 

V
o

lt
s

 (
s

e
c

o
n

d
a

ry
) 

25% of Feeder Length 

50% of Feeder Load 

S
u
b
s
ta

ti
o
n

 

Loads only 

Voltage Profile 

No VVO 

13 

MIPSYCON 2017 



126 

120 

114 

1 2 3 4 5 6 7 8 

V
o

lt
s

 (
s

e
c

o
n

d
a

ry
) 

25% of Feeder Length 

50% of Feeder Load 

S
u
b
s
ta

ti
o
n

 

Loads only 

Voltage Profile 

No VVO 

 

CAPS ON 

Capacitors decrease losses proving flatter voltage profile 

14 

MIPSYCON 2017 



126 

120 

114 

1 2 3 4 5 6 7 8 

V
o

lt
s

 (
s

e
c

o
n

d
a

ry
) 

25% of Feeder Length 

50% of Feeder Load 

S
u
b
s
ta

ti
o
n

 

Voltage Profile 

Loads only 
No VVO 

 

CAPs ON 

Capacitors decrease losses proving flatter voltage profile 

VVO  

15 

MIPSYCON 2017 



126 

120 

114 

1 2 3 4 5 6 7 8 

V
o

lt
s

 (
s

e
c

o
n

d
a

ry
) 

25% of Feeder Length 

50% of Feeder Load 

S
u
b
s
ta

ti
o
n

 

Voltage Profile 

Loads only 

No VVO 

 

CAPs ON 

Capacitors decrease losses proving flatter voltage profile 

VVO  

VVO + CVR  

16 

MIPSYCON 2017 



VVO Results 

Reduce losses 
 XC counters XL of lines 

Decreased operation of OLTC elements 
Deferred capital expenditures and improved 

capital asset utilization  
Reduced electricity generation and 

environmental impacts  
Flatter voltage profile 
 Allows better CVR without low voltage violation at 

the end-of-line 
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Line Drop Compensation Principle 
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• Regulates voltage at a point closer to the load as voltage drops due to 
loss in the line because of line impedance and current 

 

Without LDC at full Load 

With LDC at full Load and unity power factor(X=5) 

52 79

Line Impedance  (R+jX)

Load Center

52 79
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Load Center

120V 
118V 115V 

125V 
123V 120V 

LDC – R,X 
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LDC - Z 

 Application:  Distribution bus regulation 

 

 

 

 

 Concept:  Increase bus voltage as the load level increases 

 No individual line information 

 Uses current magnitude ONLY 
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CAPs use “feedforward” control such as time-of-day, 
day, temperature, seasonality 

 Feedforward is only as good as your assumptions and 

correlation factors 

CAPs use voltage or VAR w/voltage override 

Difficult to coordinate with OLTC elements using LDC with 

voltage or VAR w/voltage override 

VAR controls not much good near end of line 

 Little load flow 

VAR controls must be on main line 

 Voltage controls may be on line tap when “real estate” is sparse 
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CAP Voltage Control 
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• Why? As  voltage rises, counter with absorbing VAr 
• Uses droop characteristic 
• Based on power and voltage sensing at PCC  
• If inverter based, a “Smart” Inverter 

DER Actively Controlling VAR 
Volt-VAr 

25 
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CAPs and DER 
• As power flows and assumed reactive voltage drops can 

change as DER proliferates, consider changing fixed CAPs to 
switched to avoid overvoltage (from excessive VAR support) 
under high DER output conditions 

• Consider active voltage (VAR) control of DER as proliferation 
increases 
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Representation in  
Application Sequences 
• Voltage Low = Provide VARS 

• Voltage High = Consume VARS 
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Traditional Methods: Control Based 
OLTC Elements 

OLTCs use line drop compensation (LDC) 
to cope with line losses  (R/XL, Z)  

Only as good as line model 

May not coordinate with downline reactive 
elements for VAR/pf regulation 

How can LDC control voltage sensing CAPs? 

How can LDC control DER VAR output? 
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Use of VAR-Bias to Coordinate  
DERs/CAPs with REGs and LTCs 

 VAR-Bias as a new concept to unify VVO with OLTCs 
and CAPs 

 Use a “VAR-Bias” characteristic to change the 
response of the OLTC (REGC or LTCC)  

 The VAR-Bias characteristic can be tailored for 
normal operation (non-CVR) and CVR operation 

– Normal (non-CVR) Operation: Negative VAR Bias 

– CVR Operation: Positive VAR Bias 
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Use of VAR-Bias to Coordinate  
DERs/CAPs with REGs and LTCs 

• REGC and LTCC use information on VAR flow 

– Is the VAR flow out to the line (load)? 

– Is the VAR flow into the source? 

 

• The above indicate if you are or are not at/near unity 
power factor 

 

• VAR flow into the REG or LTC indicate the voltage 
downline is higher than the voltage at the REG or LTC 
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Use of VAR Bias in OLTC Devices  
(instead of LDC) 

 • Use VAR-Bias control to modify behavior of the voltage adjustment 
with regard to real and reactive power flows to properly manipulate 
voltage bandcenter 

 
 
 
 

Normal, Non-CVR Application
Negative Linear VAR Bias

Lagging VARs (+)

120V

118V

116V

122V

124V

Leading VARs (-)
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Negative VAR-Bias 
 • Called “negative” as lagging VAR causes voltage band to be lowered 

• Designed to maintain unity pf and coax proper voltage asset, OLTC or 
reactive asset, to act depending on the cause of the voltage change 
 Voltage change from real power change, use OLTC asset 

 Voltage change by reactive power change, use VAR asset 

 
 
 
 

Normal, Non-CVR Application
Negative Linear VAR Bias

Lagging VARs (+)

120V

118V

116V

122V

124V

Leading VARs (-)
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VAR-Bias: Near or at Unity PF 

 
 
 
 

Normal, Non-CVR Application
Negative Linear VAR Bias

Lagging VARs (+)

120V

118V

116V

122V

124V

Leading VARs (-)

OLTC
 Tap Down

OLTC
 Tap Up
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VAR-Bias:  
Bandcenter Decreases with Lagging VAR 

 
 
 
 

Normal, Non-CVR Application
Negative Linear VAR Bias

Lagging VARs (+)

120V

118V

116V

122V

124V

Leading VARs (-)

NO Tap 
Command

As voltage falls:
 CAPs switch ON
 DER exports VAr 
 Voltage rises from 

increase in VAr
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VAR-Bias:  
Bandcenter Increases with Leading VAR 

 
 
 
 

Normal, Non-CVR Application
Negative Linear VAR Bias

Lagging VARs (+)

120V

118V

116V

122V

124V

Leading VARs (-)

NO Tap 
Command

As voltage rises:
 CAPs switch OFF
 DER absorbs VAr 
 Voltage lowers from 

decrease in VAr
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Normal Operation: 
 Negative VAR-Bias 

• Voltage near 
center of band 

• Near unity 
power factor 
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Normal Operation: 
 Negative VAR-Bias 

• Inductive load 
increases, pf  lags,  
voltage 
decreases.  

• REG bandcenter 
lowers. 

• CAPs come on, 
DER outputs VAr 

• Voltage and VAr 
normalize 
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Normal Operation: 
 Negative VAR-Bias 

• Inductive load 
decreases, pf 
leads,  
voltage rises.  

• REG bandcenter 
rises. 

• CAPs switch off, 
DER consumes 
VAr 

• Voltage and VAr 
normalize 

52

Closed

Opened

Closed

Opened

Closed

Opened

Closed

Opened

121V

118V

117V

116V

122V

123V

124V

119V

120V

NORMAL OPERATION (non-CVR)

DERVAr
OUT

VAr
IN

VLOW VHIGH

DERVAr
OUT

VAr
IN

VLOW VHIGH

1

2

3

38 

1

Normal, Non-CVR Application
Negative Linear VAR Bias

Leading VARsLagging VARs
120V

121V

118V

117V

116V

122V

123V

124V

119V

2

3
1

(-)

(+)

MIPSYCON 2017 



Normal Operation: 
 Negative VAR-Bias 

• Resistive load 
decreases, pf 
remains the 
same, voltage 
rises 

• REG taps down, 
voltage 
normalizes 

• CAPs and DER 
do not change 
VAr output 
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Normal Operation: 
 Negative VAR-Bias 

• Resistive load 
increases, pf  leads,  
voltage decreases 

• REG taps up, 
voltage normalizes 

• CAPs and DER do 
not change VAr 
output 
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Voltage Bandcenter and Bandwidth: LTC/REG, CAP, DER 

• CAPS and DER 
furthest away from 
source have shorter 
time delay than 
upline similar devices 

• This examples uses 
CAPs before DER 

– Assuming DER 
charges for reactive 
support 

41 

52

Closed

Opened

Closed

Opened

Closed

Opened

Closed

Opened

DERVAr
OUT

VAr
IN

VLOW VHIGH

DERVAr
OUT

VAr
IN

VLOW VHIGH

Normal, Non-CVR Application
Negative Linear VAR Bias

Leading VARsLagging VARs
120V

121V

118V

117V

116V

122V

123V

124V

119V

REG

CAP
DER

REG

CAP

DER

(+) (-)

MIPSYCON 2017 



Voltage Settings and Timings: LTC/REG, CAP, DER 

• CAPS and DER furthest away 
from source have shorter time 
delay than upline similar 
devices 

• This examples uses CAPs 
switching before DER, assuming 
DER charges for reactive 
support 

• REGs use VAR-Bias with larger 
bandwidth and longer time 
delays than CAPs or DER 
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VARVAR--Bias and Deep CVRBias and Deep CVR  

 How low can you go? 
Lower than you may think! 
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 VVO and CVR - Why 
 • Lowering distribution voltage levels during peak 

periods to achieve peak demand reductions 

• Reducing voltage levels for longer periods to 
achieve electricity conservation 

• Reducing energy losses in the electric distribution 
system 
 

Benefits include deferral of capital expenditures, 
energy savings, and greater operational flexibility 

and efficiency 

Voltage and Reactive Power Management – Initial Results: US DOE, 12/12 
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 Conservation Voltage Reduction 
  

 Goal of voltage reduction is to reduce load 
V= I * R  for constant Z load 
The lower the V the lower the I 
The lower the I, the lower the I2R = W (constant Z load) 

 Ex., incandescent lights, strip heaters 

Not true if load is not constant power type (constant PQ load): 
 Ex., motors, power supplies  

 

Can be deployed at: 
 All times 
 For load reduction periods (peak reduction) 
 During system emergencies when the voltage is collapsing due 

reactive load exceeding available supply 
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Load Models and CVR Factor 
• Load models 
 Constant Power (PQ) 

 Constant Impedance (Z) 

 Constant Current (I) 

Load current changes inversely to the 
change in voltage   

Load current changes linearly with the 
change in delivered voltage, and the 
demand varies as a squared function of the 
voltage change (ex., incandescent bulb) 

Power delivered to the load varies linearly 
with the change in voltage delivered to the 
load 

Evaluating Conservation Voltage Reduction with WindMil® - Milsoft 

CVRf = P/V 

 0.5 to 0.7 is typical 

 Greater than 1 is really good 

Constant Power 
(PQ or kVA) 

Constant Impedance (Z) Constant Current (I) 

Motors (at rated load) Incandescent/Dimmable 
LEDLighting 

Welding Units 

Power Supplies Resistive (Strip) Water Heaters Electroplating 

Fluorescent/LED Lighting Electric Stoves  

Washing Machines Clothes Dryers  
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Load Models and CVR Factor 

Evaluating Conservation Voltage Reduction with WindMil® - Milsoft 

CVRf = P/V 

 0.5 is typical 

 Greater than 1 is really good 
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(PQ or kVA) 

Constant Impedance (Z) Constant Current (I) 

Motors (at rated load) Incandescent/Dimmable 
LEDLighting 

Welding Units 

Power Supplies Resistive (Strip) Water Heaters Electroplating 

Fluorescent/LED Lighting Electric Stoves  

Washing Machines Clothes Dryers  
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Negative VAR-Bias 
 • Called “negative” as lagging VAR causes voltage band to be lowered 

• Designed to maintain unity pf and coax proper voltage asset, OLTC or 
reactive asset, to act depending on the cause of the voltage change 
 Voltage change from real power change, use OLTC asset 

 Voltage change by reactive power change, use VAR asset 

 
 
 
 

Normal, Non-CVR Application
Negative Linear VAR Bias

Lagging VARs (+)

120V

118V

116V

122V

124V

Leading VARs (-)
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Positive VAR-Bias 
 • Called “positive” as leading VAR causes voltage band to be lowered 

• Designed to cause leading pf and raise voltage at end of the feeder 
 Allows head of feeder to lower voltage near ANSI C84.1 low limits 

 Fosters greater power reduction during CVR operation 

 
 
 

CVR Application
Positive Linear VAR Bias

Lagging VARs (+)

120V

118V

116V

122V

124V

Leading VARs (-)
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CVR Operation: 
Positive VAR-Bias 
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CVR Operation: 
 Positive VAR-Bias 
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The cost is ADVVOCs, which you need anyway 

 

No extensive comms system required 

NO DMS required 

Feedback loop from CAPs to OLTCs to modify 
voltage control is made from VAR 
flow/direction 

 

VAR-Bias 
Take Away 
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Terminology Cross Reference 

Use of Powerflow Direction Change by 
REGC/LTCC 
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REGC/LTCC: Reverse Power Method Discussion 

RPF Selection 
55 
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Return to Neutral 
• Return to Neutral – drives tap 

position to neutral and then 
stops 
– Use where small unpredictable 

change in voltage may be 
encountered on RPF side of REG 

– “Feel safe” strategy when one 
cannot distinguish the source 
strength of the RFP 

– Is it DER, and possible weak? 
– Is it DA, and strong? 

– Can be risky as there is no control 
once at the neutral tap 
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Block 
• Block – inhibits automatic 

operation, leaving regulator on 
present tap 
– Use where source of RPF is not 

expected to change voltage on 
RPF side of REG 

– Also a “feel safe” strategy when 
one cannot distinguish the 
source strength of the RFP 

– Is it DER, and possible weak? 
– Is it DA, and strong? 

– Can be risky as there is no 
control and the voltage begins to 
deviate 
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Ignore:  Regulate Forward 

• Regulate Forward (Ignore) – 
continues control action as 
though forward power flow 
continued to exist.  
– Uses same settings with 

normal forward power flow 
– May use with small amounts 

of RPF, or when you need to 
drive down voltage due to 
DER causing a voltage rise 

– With strong reverse power 
flows, LDC will drive voltage 
down 
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• Regulating forward, +LDC raises bandcenter as FPF becomes larger 

• Regulating forward, -LCD lowers bandcenter as RPF becomes larger 

 

Ignore: 
Regulate Forward 

 with RFP 

Load
(FPF)

Source
(FPF)

Source
(RPF)

Load
(RPF)

RPF

Regulates FPF 
Side

OLTC
XFRM-1

OLTC
REG-1

79/152/1

DER DER

 
Reverse Powerflow

Load Load Load Load

[Volts added to 
Bandcenter]

[Volts subtracted 
from Bandcenter]

FPFRPF

(+) LDC R/XL 
or Z

(-) LDC R/XL 
or Z

+V

-V
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Forward Power 

 

 

 

Reverse Power 
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raising it 

Regulate Forward and LDC 
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DG Mode: Regulate Forward with New LDC Settings 
 Regulate Forward (DG Mode) 

– This mode of operation is the 
same as the Ignore mode, plus 
provides ability to change line 
drop compensation (LDC)  

– Use where DER power output is 
large enough to warrant new 
LDC settings 
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 A separate set of LDC settings can be specified which will 
be applied during reverse power 

• This can include LDC factor magnitudes, signs and the use of R and 
XL , or Z 

• VAR-Bias may also be selected 
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• Regulating forward, -LDC raises bandcenter as RPF becomes larger 

• Regulating forward, +LCD lowers bandcenter as RPF becomes larger 

“DG Mode” 
Regulate Forward 

OLTC
XFRM-1

OLTC
REG-1

79/152/1

DER DER

 Reverse Powerflow
with DER

Load Load Load Load

Load
(FPF)

Source
(FPF)

Source
(RPF)

Load
(RPF)

RPF

Regulates FPF  
Side

[Volts added to Bandcenter]

[Volts subtracted from Bandcenter]

(-) LDC R/XL 
or Z

FPF

+V

-V

(+) LDC R/XL 
or Z
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REGC/LTCC: Reverse Power, “Regulate Reverse” 
• Regulate Reverse (Calculated): 
 Voltage Sensing:  With RPF, control uses tap 

position knowledge and FPF side voltage 
 Regulates according to reverse power settings 

– Use where RPF source to OLTC is a stronger source 
– Regulate voltage on the RPF side of the OLTC 

• Typically used for reconfiguration 
 

• Regulate Reverse (Measured): 
 Voltage Sensing: With RFP, control switches its 

voltage sensing input to a RPF side VT   
– RFP side VT must be available 

 Regulates according to reverse power settings 
– Use where RPF source to REG is a stronger source 
– Regulate voltage on the RPF side of the REG 

• Typically use for reconfiguration 
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Load
(FPF)

Source
(FPF)

Source
(RPF)

Load
(RPF)

RPF

RPF

Source
(RPF)

Load
(RPF)
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(FPF)

Source
(FPF)
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REGC/LTCC: Reverse Power, “Regulate Reverse”  
• “Regulate Reverse” 
  Calculated 

• Regulates reverse with 
new voltage settings  
and LDC values 

• Use with strong RPF 
source (reconfig) 

• Uses tap position and 
calculates voltage on 
previous source side of 
regulator 

• Additional VT not 
needed 64 
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REGC/LTCC: Reverse Power, “Regulate Reverse”  

• “Regulate Reverse” 
  Measured 

• Regulates reverse 
with new voltage 
setpoints  and LDC 
values 

• Use with strong 
RPF source 
(reconfig) 

• Uses additional VT 
on previous supply 
side of regulator 
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Issues with DA and DER 

Reverse Power Flow (RPF) 

Both a reconfig and DER may cause RPF 

 With DER (weaker source than system), forward 
regulation should be employed 

 With reconfig (strong source switches), reverse 
regulation should be employed  

 

How do we know weak and strong source  

if you have mix of DA and DER? 
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 How do you know after a 
reconfiguration which side of a 
regulator has the string source? 
 

 How do you control caps 
relocated due to reconfiguration 
 

 Normal power from Utility to load 
 Utility strong source 

 DER may backfeed 
 Typically a weaker source 

 

 What to do with power reversal 
from sectionalizing? 
 

 What to do with power reversal 
from DER? 
 

 What to do about LDC with DER 
influencing? 
 
 

High Penetration of DER and/or DA on Distribution Systems 

Requires Smart Technology to obtain VVO/CVR 

67 
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Sample DA ScenariosSample DA Scenarios  

 What does DA do to power flow and source 
strength on line sections? 
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Volt/VAR Control Considerations from DA 

7952 79

7952 79

79

• Normal open loop 

• Uses recloses to perform FLISR 

• V/VAR feeder devices employed: REGC and CAPC 
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Volt/VAR Control Considerations from DA 

7952 79

7952 79

79

X

• Fault occurs on feeder 
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71 

Volt/VAR Control Considerations from DA 

7952 79

7952 79

79

• Fault is cleared by 52 (O/C trip and LO) and 79 (27) 

• Tie 79 closes (uses H/D logic) 

• Power is restored to most of loop system 

• Reverse power flow occurs on some section of the newly-

configured feeder 
71 
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72 

Voltage Control Considerations from DA: REGC 

7952 79

7952 79

79

Reverse 
Power Flow

How to address RFP: 

1. Do nothing (does not work; REG LDC causes operational errors) 

2. Use communications to control by setpoint or setting group 

3. Use change of powerflow direction to change to a new predetermined 

control mode 

4. Use change of powerflow direction and source strength (by REGC 

measurement) to initiate autodetermination of best control mode  
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RPF: Why We Care???? 

• With high penetration levels of DA and/or DER on the 

distribution system it is becoming more common to have 

the voltage regulators deal with reverse power situations 

• The solution to the OLTC problem gets complicated as the 

control needs to know (or assume) the source of reverse 

power.  

• It is important to select the correct reverse power mode of 

operation for voltage regulators otherwise dangerous high 

or low voltage levels may result causing equipment 

damage or misoperations 
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Forward Power 

 

 

 

Reverse Power 
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The Reverse Power Flow  
(RPF) Problem 

• It’s all about source strength 

– If the source is weak, small impact (most DER) 

– If the source is strong, big impact (reconfiguration) 

 
 

• Impacts of strong source RPF: 

– Drives LDC the wrong way 

– Regulation should be in the now reverse direction 

• The tail cannot wag the dog 

75 
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No RPF Source 

76 

OLTC
XFRM-1

OLTC
REG-1

79/152/1

Forward Powerflow 
 

Load Load Load Load
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Weak RPF Source 

77 

OLTC
XFRM-1

OLTC
REG-1

79/152/1

DER DER

Forward Powerflow 
without DER

 Reverse Powerflow
with DER

Load Load Load Load
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No RPF Source: Open Loop 
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OLTC
XFRM-1

 

Load Load Load Load

OLTC
XFRM-1

OLTC
REG-3

 

Load Load Load Load

Load

Load

Load

Load

OLTC
REG-1

52/1 79/1

79/5

79/2

52/2 79/3 79/4

Forward Powerflow 
without Reconfig

OLTC
REG-2

OLTC
REG-4

Forward Powerflow 
without Reconfig

Forward Powerflow 
without Reconfig

Forward Powerflow 
without Reconfig
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Strong FPF Source: Reconfig 
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OLTC
XFRM-1

 

Load Load Load Load

OLTC
XFRM-1

OLTC
REG-3

 

Load Load Load Load

Load

Load

Load

Load

OLTC
REG-1

52/1

52/2 79/3 79/4

Forward Powerflow 
without Reconfig

OLTC
REG-2

OLTC
REG-4

Forward Powerflow 
without Reconfig

Forward Powerflow 
without Reconfig

OLTC
REG-5

79/5

79/279/1

Dead Section

Forward Powerflow
with Reconfig
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Strong RPF Source: Reconfig 
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OLTC
XFRM-1

 

Load Load Load Load

OLTC
XFRM-1

OLTC
REG-3

 

Load Load Load Load

Load

Load

Load

Load

OLTC
REG-1

52/1

52/2 79/3 79/4

Forward Powerflow 
without Reconfig

OLTC
REG-2

OLTC
REG-4

Forward Powerflow 
without Reconfig

OLTC
REG-5

79/5

79/279/1

Dead Section

Reverse Powerflow
with Reconfig

Forward Powerflow 
without Reconfig

Forward Powerflow 
without Reconfig
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How Can One Know  
About Source Strength 
• Guess it, assume it  

• Cheap and easy if one can make assumptions 
or guess 

• LTC or REG makes RPF determination and goes 
into predetermined response mode, either: 

• No DER on line, and the only way you can have RFP is a 
reconfiguration  with a new source direction (assume 
new strong source) 

• No reconfiguration possible, so only DER can cause RPF 
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Knowing Relative 
Source Strength is KEY 

• Use “Autodetermination” 
– Reverse Power Flow Source Strength 

Determination   
• Control determines relative source strength 

– Why it is important 
• Weak source (DER) results in continuing forward regulation   

– May employ different LDC or VAR-Bias settings 

• Strong source (Reconfig) results in use of reverse regulation 

– May employ different Bandcenter, Bandwidth, and LDC or VAR-Bias  
settings 
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Source 1

100 %

DPI1 = X1

LTC Transformer 

Impedance =XT

VT1 VT2

DPI2 = X2

Source 2

100 %

Simulation of LTC Transformer/Regulator 
 with Two sources: Simplified Model 
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Case 
# 

DPI1 DPI2 

Reactive Current (IX) 

Through the 
transformer 

VT1 VT2 V 

1 2% ∞ 0 100% 100.625% .625 

2 ∞ 2% 0 99.375% 100% .625 

3 2% 20% 1.953 % 99.96 % 100.4% .04 

4 20% 2% 1.953 % 99.6 % 100.035% .04 

5 2% 2% 7.14 % 99.85% 100.14% .29 

Simulation Results 

84 84 

1 & 2:  System reconfiguration; one source, radial 

3 & 4:  DER (weak) vs. System (strong) 

5:        Two weak sources 

 

IOWA/NEBRASKA SYSTEM PROTECTION  

AND SUBSTATION CONFERENCE 
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 When RPF is detected, operation is set initially to “DG Mode” 
 

 V is measured for two tap operations: 

      V = VMBT -VMAT  

          where  VMBT  = measured load side voltage just before a tap change  
                      VMAT = measured load side voltage one second after the tap change 
 

 

Autodetermination of Source Strength with RPF 
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 • If the measured V is > 0.47 (75%) of the 
normal expected value (0.625V) for two 
consecutive tap changes, Autodetermination 
will maintain “DG Mode” operation 
 

• If the measured V is <= 0.31V  (50%) of the 
normal expected value (0.625V) for two 
consecutive tap changes, Autodetermination 
changes to “Regulate Reverse Mode” operation 

V ≥  75%
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Reverse Power Source Strength Determination: 

User Manually Designates 

“DG Mode”

Reverse Power Flow 
Detected

User 
Manually Designates 

Source Strength

“Regulate Reverse”

Weak Strong
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Reverse Power Source Strength Determination: 

Autodetermination 

“DG Mode”

Reverse Power Flow 
Detected

“Regulate Reverse”

Weak StrongAutodetermination
Dynamically Designates 

Source Strength
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REGC/LTCC: Autodetermination of Operating Mode 
with Reverse Power 

88 
-1

Uses “Forward Power”
Band Center, Band Width 

and Time

Distributed Generation

121.0

4

+2

+5

Reverse Power

45

FPF

RPF

RPF Source StrongRPF Source Weak

Autodetermination:

Senses Reverse Powerflow (RPF), then:

 If normal load side remains weak source, 

switches to “DG Mode”

 If normal load side changes to strong 

source, switches to “Regulate Reverse” 

(Reverse Power)

120.0

+1

+3

4

Forward Power
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Handling DER rapid output change 

 Irradiance and wind velocity can change very quickly 

 Large rise or drop in power (W, VAR) can cause large 
voltage swings 

 Normal fixed timing in OLTCs may not respond fast 
enough for good control 

 Employ inverse response curve for time delay 

– Small changes yield longer time delays 

– Large changes yield shorter time delays 
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Definite Time OLTC Characteristic 
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Inverse Curve OLTC Time Characteristic 
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Inverse TD Example 

 
 

       Example 

Bandcenter = 120 V 

Bandwidth = 2 V 

Inverse Time Delay = 120 V 

Sensed Voltage = 123 V 

Time Delay Factor = (Vsense - Vbandcenter)/(BW/2) 

Time Delay Factor =(123-120)/(2/2) = 3/1 = 3 

From Graph,  % Factor = 34% 

Time = Setting * % Factor  

Time = 120 sec. * 0.34 = 40.8 = 41 sec.  
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Protection Concepts Protection Concepts   

and DER Issuesand DER Issues  
 Bidirectional Fault Current & DirectionalizationBidirectional Fault Current & Directionalization  

 Reclosing treatment :Reclosing treatment :  

•• Increase of 1st Shot Time Increase of 1st Shot Time DelayDelay  

•• Adaptive protection with voltage control of reclosingAdaptive protection with voltage control of reclosing  

 Ferroresonance on islanded feeder sFerroresonance on islanded feeder s  

 Ungrounded Ungrounded fault backfeed into transmission fault backfeed into transmission 
protection protection   
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• No effect – 22% 

• Revised feeder coordination – 39% 

• Added directional ground relays – 25% 

• Added direction phase relays – 22% 

• Added supervisory control  - 22% 

• Revised switching procedures – 19% 

Impact on Utility Protection 

IEEE Distribution Practices Survey – 1/02 
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Bidirectional Fault Currents:  Coordination 

• Use directional elements in substation protection, 
mid-line reclosers and DER 
 

 Substation 
• Directionalize using 67 and 67N (instead of 50/51 and 50/51N) 

• Trip toward DER (downstream) to avoid sympathy trips for  
out-of-section faults 

• Trip toward Substation for remote breaker failure 

 Reclosers 
• Directionalize using 67 and 67N (instead of 50/51 and 50/51N) 

• Trip toward Substation for remote breaker failure 

 DER 
• Directionalize using 67 and 67N (instead of 50/51 and 50/51N) 

• Trip direction away from DER (upstream) 
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DER

DER

DER on System 
 

• Directional phase and 
ground overcurrent 
elements 

• Use voltage 
polarization 

1 2 

3 

Directionalization toward DER 
helps prevent sympathy trips 
from out-of-section faults 
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DER
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Directionalization toward Substation 
provides  remote breaker failure 
protection 

• Directional phase and ground 
overcurrent elements 

• Use voltage polarization 

• All reverse looking elements trip 
slower than all forward looking 
elements 

1 
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DER on System 
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• Revise reclosing practices – 50% 

• Added voltage relays to supervise 
reclosing – 36% 

• Extend 1st shot reclose time – 26% 

• Added transfer trip – 20% 

• Eliminate reclosing – 14% 

• Added sync check – 6% 

• Reduce reclose attempts – 6% 

DER Impact on Utility Reclosing 

IEEE Distribution Practices Survey – 1/02 
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• If high-speed reclosing is employed, the DER 

interconnection protection must be faster! 

• Clearing time includes protection operation and breaker 

opening 

Utility Reclosing Issues: 
It is all about time………. 

DER must trip from 

utility in this interval 
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Utility Reclosing Issues: 
It is all about time………. 

DER must trip 

from utility in 

this interval 
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Voltage Supervised 
 Dead Time 
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Voltage Supervised Dead Time 
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• Ferroresonance can take place between an induction 
generator and capacitors after utility disconnection from 
feeder 

– Ferroresonance can also occur from Synchronous 
Generators  and Inverter-based DER!  

• Generator is excited by capacitors if the reactive 
components of the generator (XG) and aggregated 
capacitors (XC) are close in value  
 

• This interplay produces non-sinusoidal waveforms with 
high voltage peaks. This causes transformers to saturate, 
causing non-linearities that exacerbate the problem. 

Ferroresonance 
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New York Field Tests- 1989 

Field Test Circuit (NYSEG) 

105 

Ferroresonance:  

Test Circuit Setup 
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Conditions: 

Wye-Wye Transformers, 100kVAr capacitance, 60kW generator, 12kW load 

 

New York Field Tests  - 1989 

Field Test Circuit (NYSEG) 

Ferroresonance:  

Observed Waveforms 
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• Need a peak detecting 
relay element 
 “59I” 

 “RMSing” may smooth out 
high peaks 

Ferroresonance 
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Recommended Reading 
• IEEE 1547 Series of Standards for Interconnecting 

Distributed Resources with Electric Power Systems, 
http://grouper.ieee.org/groups/scc21/ 

• IEEE 1547-2017 (Draft 6.7) 

• IEEE 1547a, 2014, Standard for Interconnecting 
Distributed Resources with Electric Power Systems, 
Addendum 1. 

• Application of Automated Controls for Voltage and 
Reactive Power Management – Initial Results, US DOE, 
12/2012 

• Beckwith Electric Company, M-2001D Loadtapchanger 
Control Instruction Book, Chapter 6, 2016. 
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• “Smart Reverse Power Operating Mode for Distribution 
Voltage Regulators to Handle Distributed Generation 
along with Feeder Reconfiguration,” Dr. Murty V.V.S. 
Yalla. Presented at the PacWorld Conference, 2015. 

• R. Bravo B. Yinger, P. Arons, "Fault Induced Delayed 
Voltage Recovery (FIDVR) Indicators," IEEE T&D, 2014 

• Distribution Line Protection Practices Industry Survey 
Results, Dec. 2002, IEEE PSRC Working Group Report 

• D. James, J. Kueck, " Commercial Building Motor 
Protection Response Report," US DOE, Pacific Northwest 
National Laboratory, 2015 

 

Recommended Reading 
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• Evaluating Conservation Voltage Reduction with 
WindMil, Milsoft, G. Shirek, 2011 

• C37.230, IEEE Guide for Protective Relay Applications to 
Distribution Lines, IEEE Power System Relaying 
Committee, Second Edition, 2007 

• 1547a and Rule 21, Smart Inverter Workshop, June 21, 
2013, SCE 

• Bob McFetridge, Barry Stephens, “Can a Grid Be Smart 
without Communications? A Look at IVVC 
Implementation: Georgia Power’s Distribution Efficiency 
Program.” Presented at the Clemson Power Systems 
Conference, 2013.  

 

Recommended Reading 
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• Implementing VVO with DER Penetration, IEEE 

Innovative Smart Grid Technology (ISGT) Conference, 

Washington DC, 2017 

• Chuck Whitaker, Jeff Newmiller, Michael Ropp, Benn 

Norris, “Renewable Systems Interconnection Study: 

Distributed Photovoltaic Systems Design and Technology 

Requirements,” Sandia National Labs, Dec. 2012. 

• Turan Gonen, Electric Power Distribution Engineering, 

2008, pp. 398-404. 

• On-Site Power Generation, by EGSA,   

ISBN# 0-9625949-4-6 

• Effect of Distribution Automation on Protective Relaying, 

2012, IEEE PSRC Working Group Report  

 
113 

Recommended Reading 
MIPSYCON 2017 


