MEASURING THE BAKKEN

Metering and Monitoring Power Consumption in Western North Dakota and Eastern Montana

Jeremy Mahowald
Chief Operating Officer
Upper Missouri Power Cooperative
Sidney, MT

For
Minnesota Power Systems Conference
St. Paul, MN

November 9, 2016
3:00 PM
A CASE STUDY ON TRANSMISSION METERING AND POWER MEASUREMENT

- Western North Dakota and Eastern Montana
- One of the quietest parts of the United States to rapid industrialization for oil and gas production
- Extensive and expansive growth of infrastructure needed throughout the region
- Intense need for accurate measurement of power use
 - Cowboy days are over
- Part 1: Load Monitoring
- Part 2: Transmission Metering
- Upper Missouri is a transmission services cooperative
- 11 cooperatives - 6 in Montana, 5 in North Dakota
- Powering oil, gas, and agriculture
- 1,069 MW Dec 2015 peak
- 7,116 GWh in 2015
- Lots of growth
 - UMPC sold 1 of every 523 kWh sold in the U.S. in 2015
 - 0.19% of all U.S. sales
Beautiful Country
Beautiful Country
Oil, Gas, Wind, Agriculture
Big and Small
Energy Sales (GWH)

Year	Energy Sales (GWH)
2005 | 1,445
2007 | 1,870
2009 | 1,786
2011 | 2,587
2012 | 3,700
2013 | 4,671
2014 | 5,927
2015 | 7,116
Power Supply

WAPA
4%

Basin
96%
Basin Electric Power Cooperative

- Upper Missouri is a Class A Member of Basin
- Basin is a G&T based in Bismarck, ND
- Member-Owned like Upper Missouri and Mid-Yellowstone
- 96% of our power comes from Basin
- We now make up >30% of Basin
Basin’s Current Resource Portfolio

March 2016

Maximum winter capability in MW
- Wind: 810.7
- Recovered Energy Generation: 44
- Coal-based: 1,154.1
- Hydroelectric dams: 318.7
- Nuclear: 62.2
- Natural Gas: 1,026.5
- Oil, diesel, and jet fuel: 180.8
- Renewables (Recovered & Wind): 0.8

Total: 5,594 MW
Western Area Power Administration

- About 4% of Upper Missouri’s Power comes from WAPA
- Federal power – almost entirely hydro
- Low cost power
We’re Big...Yet Small!

- 4 Friendly Employees
- Mostly a “Paper G&T”
- Billing, Metering, Load Monitoring, Compliance
- Mega-Contracting
 - MDU (Montana Dakota Utilities)
 - HDR
 - Ulteig Engineering
 - Chapman Metering
11 Extremely Different Members

- Huge Variance of Member System Size, Infrastructures, Capabilities, and Needs
Need for Good Data

- Prior to joining an RTO, Basin was scrambling to understand our load
 - 2010-2014
- Growing rapidly and had ~56% of load quantified, and ~61% of that data “accurate”
 - 2 Member systems SCADA data
 - 12 Telemetry points from WAPA (TOP)
 - Crude, measured MDU load with it
- Even with multipliers, we had a very poor representation of our system
Time to Do Something

- Real-time marketing desk, losses to Basin and MDU for some months exceeded $1M
- Pressure to ACT!
To Build a SCADA System

- A Big Task, starting from scratch
- Do you put in a SCADA system for status and measurement only?
- We Considered It...
 - Looked at ACS
 - Looked closer at OSI
Existing SCADA

- **Existing SCADA**
 - At 2/11 Systems: ACS Platform

- **SCADA in Construction:**
 - At 4/11 Systems: ACS and OSI Platforms

- **No SCADA Plans:**
 - At 5/11 Systems: In the Future, maybe...

- **At Basin**
 - OSI
SCADA Needs Varied

- No Strong Desire for a Unified Platform
- Some fully established, some far away
- Operational differences
 - Distribution automation
 - Control centers
 - Transmission automation (where not BES/NERC)
- Too far apart
- May have been a good plan 15 years ago
Load Management and Demand Response

- High Load Factor at Upper Missouri
- 90-95% throughout the year
- Weak price signal from Basin
 - Especially at the time, under non-coincidental billing
 - No mechanism (at time) to follow the market, just Basin demand rates
- Maybe a consideration later...
What About the Economics?

- Real-time marketing desk, losses to Basin and MDU for some months exceeded $1M
- So?
- “Load Monitoring Incentive Program” by Basin:
 - $0.10/MWh if LM SCADA DATA is ±3% of MV90 DATA for 95% of the time
 - $0.05/MWh if LM SCADA DATA is ±3% of MV90 DATA for 90% of the time
- Benefits to Upper Missouri
 - $0.6M/year - $0.8M/year
So...

- Where do we get the data?
- What do we do with the data?
- How do we get the data from A to B?
- And we want it secure, economical, and reliable!!
- Big questions!!
Where do we get the data?

- Without SCADA, where do we have real-time load info?
 - RTU with relay data, yes, but what about tiny transmission sites?
- The revenue meter made the most sense
 - DNP3 data
- One BIG problem
 - Upper Missouri didn’t own the metering, they were all owned and maintained by WAPA
WAPA Metering

- WAPA doesn’t use DNP3 data from their meter
 - Some capable, some not
- Only communication to the meter was a phone line (dial tone)
 - MV90 / Billing data polled by WAPA monthly
- How do we get this fast DNP3 data?
- Meter Sharing Agreement
 - WAPA agreed to share their data IF we did so securely
 - UMPC responsible for all costs of communications, metering upgrades, etc
 - Months of work, negotiation, and planning
What Do We Do With the Data?

- Build our Own SCADA System?
 - Ruled out
- Have a Hosted SCADA System?
 - OSI
 - Basin ✅
- Basin has greatest need for the data
- Bring to their eDNA Historian (Schneider Electric) software
How do we get the data?

- Multiple communications methods
- What is most reliable and secure?
 - Basin microwave system
 - WAPA OPGW fiber network
 - Basin has 7% share of their system
 - Member’s OPGW networks
- What is most economical?
 - Verizon
 - DSL
 - HughesNet Satellite
Communications Hurdles

- WAPA Fiber option really off the table
 - Except where 7% given to Basin
- Microwave communications
 - Costliest
 - Used for largest sites, or if other alternatives aren’t feasible or reliable
- Most often utilized DSL, Verizon, and HughesNet
 - Higher security risk
 - Needed to meet rigorous security requirements with WAPA
A very simplified view of how our load monitoring security was designed for DSL locations (phase 1).
A very simplified view of how our Verizon security works for Verizon communications (phase 1).
- Evolving to same tactics we apply to CIP-003-6 for Low Impact Assets
 - Validation / assurance of our Encrypted Ethernet Client devices
 - More robust than serial to IP convertor
 - May firewall at the meter
 - Through security gateways SEL-3620 at headend
 - Local only access
Building a Load Monitoring Solution

- With WAPA
 - Upgrading meters to accommodate a serial connection (do not allow IP connection)
 - DNP Programming
 - Meter Sharing Agreement
 - Big and arduous task
 - IP Security and data flow
 - Basin, WAPA, Our Members, and Upper Missouri all part of the agreement
Building a Load Monitoring Solution

- With Our Members
- Working out the most effective communications and getting it installed
- Many sites did not have any more than a dial-tone previously
- Installation of load monitoring at 248 delivery points
 - SPP Deliveries
 - Splits (Submeters beyond the Deliveries)
 - WAPA Customers
 - MDU/MISO Wheeling Points
Building a Load Monitoring Solution

- With Basin
 - Calculations, losses, mapping points
- 22 Points of measurement:
 - MW (A,B,C, Total)
 - MVAR (A,B,C, Total)
 - A (A,B,C)
 - V (A,B,C)
 - PF (A,B,C, Total)
 - Hz (A,B,C, Total)
- Presentment

<table>
<thead>
<tr>
<th>Name</th>
<th>Instantaneous MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burke-Divide</td>
<td>14.44</td>
</tr>
<tr>
<td>Goldenwest</td>
<td>5.67</td>
</tr>
<tr>
<td>Lower Yellowstone</td>
<td>25.61</td>
</tr>
<tr>
<td>McConoe</td>
<td>5.54</td>
</tr>
<tr>
<td>McKenzie</td>
<td>360.95</td>
</tr>
<tr>
<td>Mullan-Williams</td>
<td>306.01</td>
</tr>
<tr>
<td>Roughrider</td>
<td>98.5</td>
</tr>
<tr>
<td>Sheridan</td>
<td>28.38</td>
</tr>
<tr>
<td>Slope</td>
<td>49.84</td>
</tr>
<tr>
<td>Southeast</td>
<td>10.2</td>
</tr>
<tr>
<td>Totals</td>
<td>892.84</td>
</tr>
</tbody>
</table>
The Results

- A comparison of old to new
- Our new data was 94% accurate within a week of turning on our new system
LOAD MONITORING

- Data started "officially" with Basin on January 13
- Looking good!!! +/- 1%
- PLUS Roughrider

Need Roughrider, Slope, X, Y, Z
Upper Missouri
Total Load

99.86% Accuracy
Load Monitoring Successful

- 248 installations complete
 - We measure every delivery of any size, and every WAPA customer >300 kW.

- Lessons on load monitoring (to me anyway):
 - We might not have needed to be so stringent
 - The best solution might not be the most expensive one
 - The government will work with you, and can be very helpful, but often on their own terms
 - Security threats are dynamic, the design you have today might have to change tomorrow
 - As with any project management, keep the communications and buy-in process strong throughout
 - Money can’t always buy speed
Measuring the Bakken Continues...

- Taking things to the next level!
- Going into SPP changes everything
The SPP Game Changer

- New Rules
- New Questions on Our Metering Path with WAPA
Measuring at the Point of Distribution

- For assets into SPP tariff, pricing is at points of distribution
- One of our members was “Pocket Metered”
 - Flows into and out of their system in two “pockets”
 - Needed 71 delivery meters installed in a very short amount of time
SPP Meter Protocols and Needs

- Annual Testing of Metering & CT’s
- Loss Compensation Analysis & Methodology
- Tight Reign on Drawings, Nameplate Photos, Factory Test Records
- Acceptance Testing
- Time Synchronization
- Real Time and Interval Data for Settlements
The Tide Shifts

- Basin wishing to get billing/settlement data directly in long-term

- Can WAPA get 71 meters installed in 8 months?
 - We didn’t think it could happen

- Do we need to have dial-tone run to every one of these 71 sites?
 - Yes if WAPA
 - IP already there through member’s fiber network

- Can the DNP data used for load monitoring be shared with our member systems?
 - Not under WAPA, would have to go through Upper Missouri first
Upper Missouri Goes into Metering

- Starts with All New Installations
 - Including the 71 under the SPP tariff we needed by end of 2015
- Replacements and Existing Meters to stay Under WAPA
- Utilize Same Communications & Network Security as for Load Monitoring
- Not a Little Thing, to Go Into Transmission Metering!
Transmission Metering is a Big Deal

- Need High Caliber Program with High Integrity on Day ONE
- UMPC bills about $1.3M/Day through our meters
 - The Tiniest of Errors can Cost a LOT Quickly
- Need a Top Notch Interconnection Process and Procedures
- Lots of Checks and Balances Are Required
WAPA Seeks a Sunset on Maintenance at Non-WAPA Facilities

- Dec 31, 2016, All WAPA metering at Non-WAPA facilities will cease, and will thereafter be operationally controlled and maintained by Upper Missouri
Notification of New or Changed Delivery and Member Requests for Data (steps 1-4)

Site Verification and SPP Settlement Location (steps 5-6), determines next step

SPP AQ Processes
DPA
DPNS
NTC
Approval (steps 7a, 7b, 7c, 7d)

Meter Installation, Communications, Networking, Security, and Programming (Steps 16-19)

Loss Compensation and Quality Assurance of Programming Intent (steps 12-15)

Submittal of Factory Test Records, Nameplates, and Station Drawings (Steps 8-11)

SPP and UMPC Records for Security and Information Databases (Steps 20-22, 28, 29)

Installation Reports to Basin, WAPA, and UMPC for Completion of EDNA, Billing, Inventory (Steps 23-27, 30)

Interconnection Process Complete Notification to member that power can be delivered through meter (Step 31)
Metering Integrity Assurance
(Checks and Balances)

- UMPC Interconnection Process
 - Continuous Improvement
- Point of Metering / Point of Delivery
 - Validated and Calculated by Basin
- Loss Compensation and Meter Programming
 - Engineered and Calculated by HDR
 - HDR QA/QC #1
 - Basin QA/QC #2
- Phasor Verification
 - Part of Acceptance Testing (Meter Commissioning) process
 - Test Equipment and Basin where possible

Comparison of Phasors between UMPC Metering (↑) and Basin Relays (→) at Patent Gate 2
Metering Integrity Assurance
(Checks and Balances)

- Load Monitoring Data Monitoring
 - Aware of data problems very quickly
 - UMPC, HDR, Basin, and SPP watching

- Backup Data Available
 - Not everywhere, continuous improvement

- Building a CT/PT Program
 - Goal of < 30-day data outage
 - Metering voltages from 7.2 kV to 230 kV
Metering Integrity Assurance
(Checks and Balances)

- Network Data Security
 - Top notch and cost effective, CIP-compliant, follows best practices of industry, and approved by WAPA
 - All data is firewalled and encrypted
 - Security Gateway / Monthly Scrambled Password Management
 - No unauthorized access to meters
 - Unique user ID for each technician accessing meters

- Billing Data
 - Stored on MV90 at UMPC and backed up offsite
 - Stored on MV90 at Basin and backed up offsite
Metering Integrity Assurance
(Checks and balances)

- Time Synchronization
 - Important for Coincidental Billing Accuracy
 - GPS and GLONASS
 - ± 100 ns from exact at our office
 - Adjusted for latency
 - Or Satellite clock at substation (IRIG-B)
 - All meters are on CST with no daylight savings adjustments

Upper Missouri's satellite clock used for synchronizing meters
Metering Integrity Assurance
(Checks and Balances)

- Coincidental Billing
 - Less errors, no switching concerns

- Annual Meter and CT Testing
 - Chapman Metering

- Compliance to SPP Metering Protocols

- Upper Missouri’s Commitment to Metering Integrity
 - Continuous monitoring of integrity
 - Program modifications where needed
 - Best Industry Practices with prudence

Lenard McCall from Chapman Metering testing a UMPC meter at Mountrail-Williams North Missouri Ridge substation
Measuring the Bakken: Success

- It is measured accurately and effectively
- Continuous Evolution
- Integrity is First Priority
 - Budgets, Feelings, Politics all come after
Contact Me

Jeremy Mahowald
Chief Operating Officer
Upper Missouri Power Cooperative
111 2nd Ave SW
Sidney, MT 59270
jmahowald@uppermo.com
M 701-261-1975
W 406-433-4100
Questions?