

Spatiotemporal Pattern Detection in Power Distribution Networks : From Data to Knowledge

Foued Barouni FouedBarouni@EATON.com

Flashback

Major power outage hits New York, other large cities

Thursday, August 14, 2003 Posted: 11:45 PM EDT (0345 GMT)

NEW YORK (CNN) -- Power began to flicker on late Thursday evening, hours after a major power outage struck simultaneously across dozens of cities in the eastern United States and Canada.

The outage occurred quickly and rippled across a large area. Cities affected included New York, Cleveland, Ohio, Detroit, Michigan, and Toronto and Ottawa, Canada.

In just three minutes, starting at 4:10 p.m., 21 power plants shut down, according to Genscape, a company that monitors the output of power plants.

- Millions of houses affected
- Hundreds of flights canceled
- Nuclear power plants in two states shut down

© 2016 Eaton. All rights reserved

Electric Power Research Institute (EPRI) :

- Lack of real-time regional and interconnection-wide power flow models for anticipating changing flow patterns and the formation of new bottlenecks.
- Insufficient "visibility" of power flow conditions over the entire region, coupled with inadequate coordination, control and communication of the power system on a regional basis. That information is flowing from 27 distribution feeds, eight re-closure or safety switches and 4,192 transformers.
- Insufficient understanding of the potential impact on August 14, 2003 of new power flow patterns caused by increased wholesale power transfers resulting from industry restructuring.

The IEC Smart Grid Standard Map

http://smartgridstandardsmap.com/

© 2016 Eaton. All rights reserved

Smart Grid IT Spending by Application, World Markets: 2014-2024

Source : Navigant Research Q4 2016

What is « this » Big Data?

'Big data' is defined by IBM as any data that cannot be captured, managed and/or processed using traditional data management components and techniques

© 2016 Eaton. All rights reserved

Why Big Data?

Data transformation: "event processing"

Event processing stands for a set of techniques, languages and tools to collect, analyze and interpret event streams.

- Speedy actions
- High volume of input events
- Analyze, decide and ACT!

What is an Event?

• "An Event is something that happens"

Events from a Smart Sensor

Signal	٨	Current Value	Previous Value	s	cale	Offset	Reported	Last	t Update Tin	ne				
BatteryVoltage	-	0	0	0.0	001	0								
ChargeCircuitryEnabled	-	0	0	1		0	✓							
DeviceTemperature	-	0	0	0.0	01	0	✓							
Fault	-	0	0	1		0	✓							
MomentaryOutage24hCount	-	0	0	1		0	✓							
NominalCurrent	-	0	0	1		0	✓							
OverCurrent	-	0	0	1		0	✓							
PeakCurrent	-	0	0	1		0	✓							
Power	-	0	0	1	=>EVE	2 L								
SampledCurrent	-	0	0	1	2 01	/27/14 17	:44:20.296 TF	RIG 1	100 0	59.9	912			
					Relay Stati	ABC ON XYZ	Date: 0	91/27/14	4 Time: 1	7:44:2	0.296			
SAL	3	•			FID=S	EL-351-7-	R312-V0-Z0050	905-D200	030714	CID=3	057			
	5					Currents	(Amps Pri)		Voltages	(kV P	ri)		0ut 1357	In 135
		La Constant			I	A IB	IC IN	IG	VAB VBC	VCA	VS	Vdc Free	q 246A	246
		in the second			[1]									
					-0.3	1 -0.14 -	0.40 -0.00 -0	0.84 0	.000 0.000	0.000	0.000	0 60.0	30	••••
					-0.2	5 -0.37 -	0.04 0.05 -0	0.66 0	.000 0.000	0.000	-0.003	-0 60.0	30	••••
- Source : Yuko	n Grid	Advisor			0.6	2 0.18	0.14 -0.01 0	9.95 -0	.003 0.000	0.003	-0.003	-0 60.0	30	••••

Powering Business Worldwide

-0.23 0.02 0.30 -0.05 0.09 -0.003 0.000 0.003 0.000

0 60.00*.... ...

CEP on Fault Current Indicator

Event Representation

Patterns : complex event processing

What is Complex Event Processing

- Initially designed for finance industry in early 2000
- Definition and detection of patterns from a stream of events

CEP: Typical Architecture

• From Store Now, Query Later, to Query Continuously!

CEP VS DBMS : turning DB upside down

- A sample pattern that alerts on each IBM stock tick with a price greater then 80 and within the next 60 seconds:
- "every StockTickEvent(symbol="Etn", price>80)
 where timer:within(60 seconds)"
- A sample pattern that alerts when event A occurs, followed by either event B or event C:

"A -> (B or C)"

Some Examples (ESPER EPL)

- Outage Management System
 - Every OverCurrentEvent (Type1) -> OverCurrentEvent (Type2) where Near(OverCurrentEvent (Type1).Location, OverCurrentEvent (Type2).Location)
- ADMS (FLISR)
 - Every RecloserOpenEvent(Recloser1)->

 (RecloserOpenEvent(Recloser2) where Near(Recloser1.location, Recloser2.location)
- Substation
 - Every TransformerRelayOpen(Device="Dev001") where timer:within(60 seconds)

CEP: How Smart a Utility Grid is?

- It can detect there was a power outage in one neighborhood 30 minutes before the first resident called the utility.
- Number of customer-voltage complaints about either surges or drops — went from 50 to zero.
- It can identify a transformer that was overloaded and needed to be replaced — before it got fried.
- In the past, the utility knew to replace transformers when they blew and lights went out.

CEP and Big Data: Challenges and Opportunities

- Integration of various data sources from different departments
 - Static vs Dynamic
 - Security
 - More sensors/equipments
 - Configuration and Management

- Who will use these analytics patterns
 - Operation groups
 - Planning groups
 - Asset Management

CEP and **Big** Data

- Ownership: Where these applications will stand? (OT vs IT, or both)
- Yet antoher large software integration project!
- Applications: predictive maintenance, situation awarness, enhanced FLISR algorithms

Questions?

Foued Barouni, Ph. D. FouedBarouni@EATON.com (418)-830-5943

