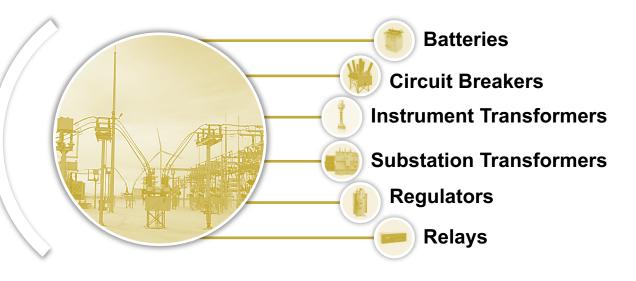


Key Attributes of Xcel Energy's Transmission Asset Health Analytics (TAHA) Program

Minnesota Power Systems Conference

November 3, 2020

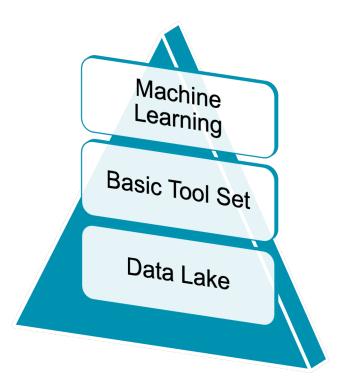
TAHA Vision

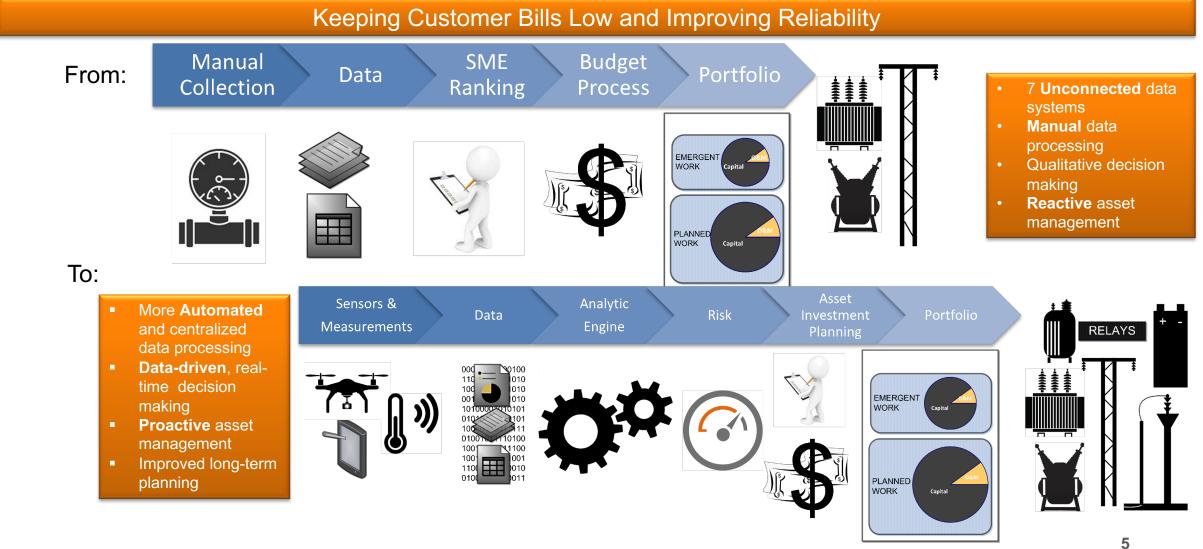

- Dependable, reliable, transactional data with complete health analysis and state of assets
- Cognitive, predictive abilities to understand Xcel Energy assets with immediate situational awareness
- Adaptable and expandable enterprise capabilities with agility across the company
- Ability to measure asset performance within Xcel Energy and compare industry wide

Goals of TAHA Project

SUBSTATIONS:

Approx. 75,000 substation assets analyzed for quantity, age, and condition




Goals of TAHA Project

- Utilize money/resources at the right place and the right time
- Provide visibility and awareness of assets
- Prioritized maintenance within and among asset classes
- Automation of manual processes
- Promote a process of continuous data improvement
- Self-service Analytics and Reporting

TAHA Strategic View

Work Streams

- ARCM and DGA using OSI-PI
- Data Lake
- Advanced Analytics (New vendor platform)

Workstream 1: ARCM & DGA

Challenge

- Manual processes used for Dissolved Gas Analysis (DGA) and Adaptive Reliability Centered Maintenance (ARCM)
- Solution
 - Automate by leveraging existing technology (OSI-PI) and streamlining data uploading from labs and other sources

• ARCM

- New OSI-PI Software Solution
- Performance data
- Operational data
- User interface
- Repeatable solutions

Workstream 1: ARCM & DGA

• DGA

- OSI-PI Dashboard provides overall conditions of oil-filled transformers @ substations.
- Gas concentration trending
- User interface
- Repeatable Solutions
- NEXT STEP
 - Continue implementing User-generated enhancements

ARCM Preventive Maintenance Scoring

											Breaker				
Row	Compan		Equipment	System						Asset Equip	Nominal				
Label 💌	y Code 🔻	Functional Locatic 💌	Name 💽	Code	 Op System Long Description 	 Area 	Division	Mn ₊∔	Mnm 🔻	Туре 💌	Voltage 💌	Maintenance Require 🔻	ARCM REQUIRE	 2021 Plan 	.
PSC	V100	SU-1905-BRKR-1016	9066	ETS	VALMONT SUBSTATION	BOULDER	SUB_BOUL	9186	99	BKRGS	115	Mechanism (SF6)	Maintenance Due	2021 plan	
PSC	V100	SU-1716-BRKR-1016	2519	EDS	FITZSIMONS SUBSTATION	ADAMS	SUB_MET	9070	112	BKRVC	13.8	Mechanism (VAC)	Maintenance Due	2021 plan	
PSC	V100	SU-1697-BRKR-1040	7040	ETS	DANIELS PARK SUBSTATION	DENVER	SUB_MET	8775	93	BKRGS	345	Minor (SF6)	Maintenance Due	2021 plan	
PSC	V100	SU-1716-BRKR-1001	1511	EDS	FITZSIMONS SUBSTATION	ADAMS	SUB_MET	8256	144	BKRVC	13.8	Mechanism (VAC)	Maintenance Due	2021 plan	
PSC	V100	SU-1716-BRKR-1002	1512	EDS	FITZSIMONS SUBSTATION	ADAMS	SUB_MET	8256	184	BKRVC	13.8	Mechanism (VAC)	Maintenance Due	2021 plan	
PSC	V100	SU-1896-BRKR-1017	2247	EDS	TOWER SUBSTATION	ADAMS	SUB_MET	7995	1162	BKRVC	13.8	Mechanism (VAC)	Maintenance Due	2021 plan	
PSC	V100	SU-1716-BRKR-1010	2510	EDS	FITZSIMONS SUBSTATION	ADAMS	SUB_MET	7984	1482	BKRVC	13.8	Mechanism (VAC)	Maintenance Due	2021 plan	
PSC	V100	SU-1716-BRKR-1015	2514	EDS	FITZSIMONS SUBSTATION	ADAMS	SUB_MET	7953	193	BKRVC	13.8	Mechanism (VAC)	Maintenance Due	2021 plan	
PSC	V100	SU-1716-BRKR-1003	1513	EDS	FITZSIMONS SUBSTATION	ADAMS	SUB_MET	7887	193	BKRVC	13.8	Mechanism (VAC)	Maintenance Due	2021 plan	
PSC	V100	SU-1716-BRKR-1000	1510	EDS	FITZSIMONS SUBSTATION	ADAMS	SUB_MET	7820	1162	BKRVC	13.8	Mechanism (VAC)	Maintenance Due	2021 plan	
PSC	V100	SU-1733-BRKR-1006	1435	EDS	GREENWOOD SUBSTATION	ARAPAHOE	SUB_MET	7724	94	BKRAR	13.8	Mechanism (AIR)	Maintenance Due	2021 plan	
PSC	V100	SU-1629-RCLR-1002	1375	EDS	ANTONITO SUBSTATION	ADAMS	SUB_SLV	7702	112	RECLR	13	Complete (OIL) RCL	Maintenance Due	2021 plan	
PSC	V100	SU-1661-BRKR-1000	5189-1	ETS	BLUE SPRUCE NUG SUBSTATION	ADAMS	SUB_MET	7624	98	BKRVC	230	Mechanism (VAC)	Maintenance Due	2021 plan	
PSC	V100	SU-1629-RCLR-1001	1374	EDS	ANTONITO SUBSTATION	ADAMS	SUB_SLV	7385	166	RECLR	13	Complete (OIL) RCL	Maintenance Due	2021 plan	
PSC	V100	SU-1818-BRKR-1009	5506	ETS	PARACHUTE SUBSTATION	GARFIELD	SUB_WEST	6750	369	BKROL	242	Mechanism (OIL)	Maintenance Due	2021 plan	
PSC	V100	SU-1903-BRKR-1028	R3260	ETS	UTE RIFLE SUBSTATION	ADAMS	SUB_WEST	6509	94	BKRGS	345	Mechanism (SF6)	Maintenance Due	2021 plan	
PSC	V100	SU-1733-BRKR-1034	5705	ETS	GREENWOOD SUBSTATION	ARAPAHOE	SUB_MET	6401	94	BKROL	242	Mechanism (OIL)	Maintenance Due	2021 plan	
PSC	V100	SU-1788-BRKR-1023	2627	EDS	MARCY SUBSTATION	ADAMS	SUB_MET	6249	1162	BKRVC	13.8	Mechanism (VAC)	Maintenance Due	2021 plan	
PSC	V100	SU-1776-BRKR-1030	9289	ETS	LEETSDALE SUBSTATION	DENVER	SUB_MET	6193	244	BKROL	115	Mechanism (OIL)	Maintenance Due	2021 plan	
PSC	V100	SU-1629-RCLR-1000	1371	EDS	ANTONITO SUBSTATION	ADAMS	SUB_SLV	5900	112	RECLR	13.8	Complete (OIL) RCL	Maintenance Due	2021 plan	
PSC	V100	SU-1734-BRKR-1025	9117	ETS	GREELEY SUBSTATION	WELD	SUB_GREE	5855	180	BKRGS	115	Mechanism (SF6)	Maintenance Due	2021 plan	
PSC	V100	SU-1643-BRKR-1005	B501	ETS	BASALT SUBSTATION	EAGLE	SUB_WEST	5790	615	BKRGS	115	Mechanism (SF6)	Maintenance Due	2021 plan	
PSC	V100	SU-1781-BRKR-1006	4823	ETS	LAMAR DC CONVERTER STATION	No Data	SUB_PUEB	5774	118	BKRGS	69	Minor (SF6)	Maintenance Due	2021 plan	
PSC	V100	SU-1643-BRKR-1012	B571	ETS	BASALT SUBSTATION	EAGLE	SUB_WEST	5765	615	BKRGS	115	Mechanism (SF6)	Maintenance Due	2021 plan	
PSC	V100	SU-1708-BRKR-1004	1092U	EDS	ELATI SUBSTATION	DENVER	SUB_MET	5680	104	BKRVC	15	Mechanism (VAC)	Maintenance Due	2021 plan	
PSC	V100	SU-1872-BRKR-1023	5172IPO	ETS	SMOKY HILL SUBSTATION	ADAMS	SUB_MET	5052	99	BKRGS	230	Mechanism (SF6)	Maintenance Due	2021 plan	
PSC	V100	SU-1905-BRKR-1014	9064	ETS	VALMONT SUBSTATION	BOULDER	SUB_BOUL	5049	96	BKRGS	115	Mechanism (SF6)	Maintenance Due	2021 plan	
PSC	V100	SU-1896-BRKR-1011	2241-1	EDS	TOWER SUBSTATION	ADAMS	SUB_MET	4998	171	BKRVC	13.8	Mechanism (VAC)	Maintenance Due	2021 plan	

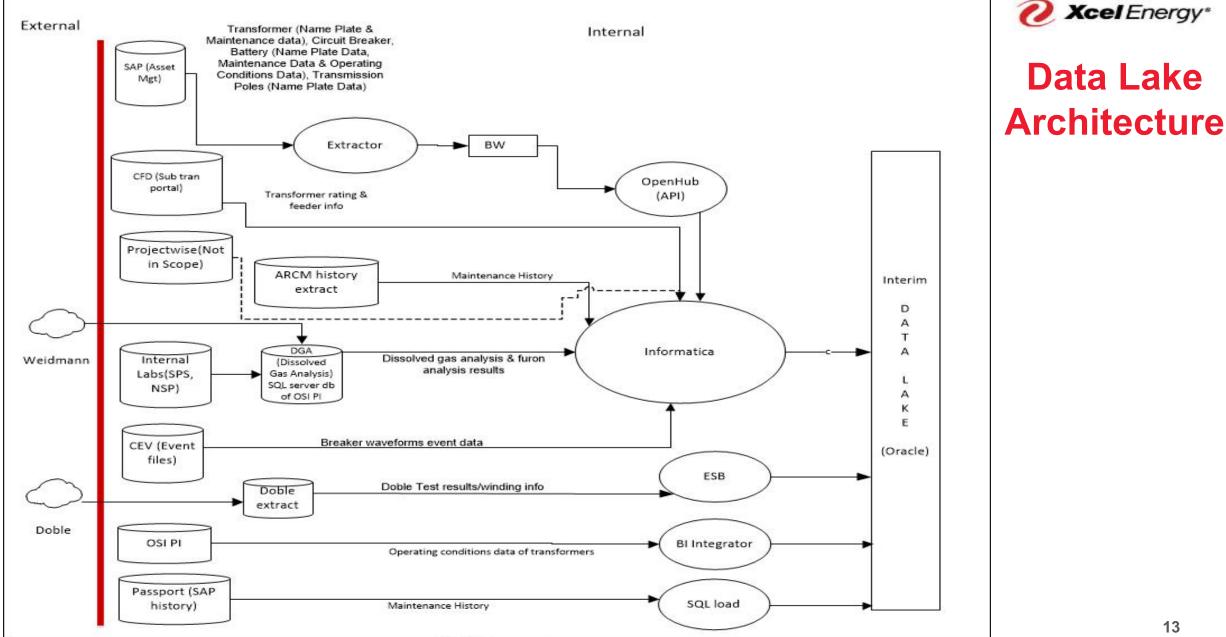
Pi System Transformer DGA Analysis

PI Vision - TAHA_DGADashboard × +
 C A txanalyticsvis.corp.xcelenergy.com/PIVision/#/Displays/374/TAHA_DGADashboardUp?starttime=2015-01-01T07:00:00Z&endtime=*&rootpath=%5C%5CTXAnalyticsAF%5CTransmissionAnalytics%5CXcel%20Energy%5CNSPM%5CBRK%5CTransformers%5... x B * B :

👖 Apps 💿 PI Vision - TAHA 📙 Imported 💿 PI Vision - EACR 📀 Xcel OneDrive 🍥 TAHA_DGALTC_DEV 🚳 APM - Assets 📙 Sanning 🧃 Xcel 365

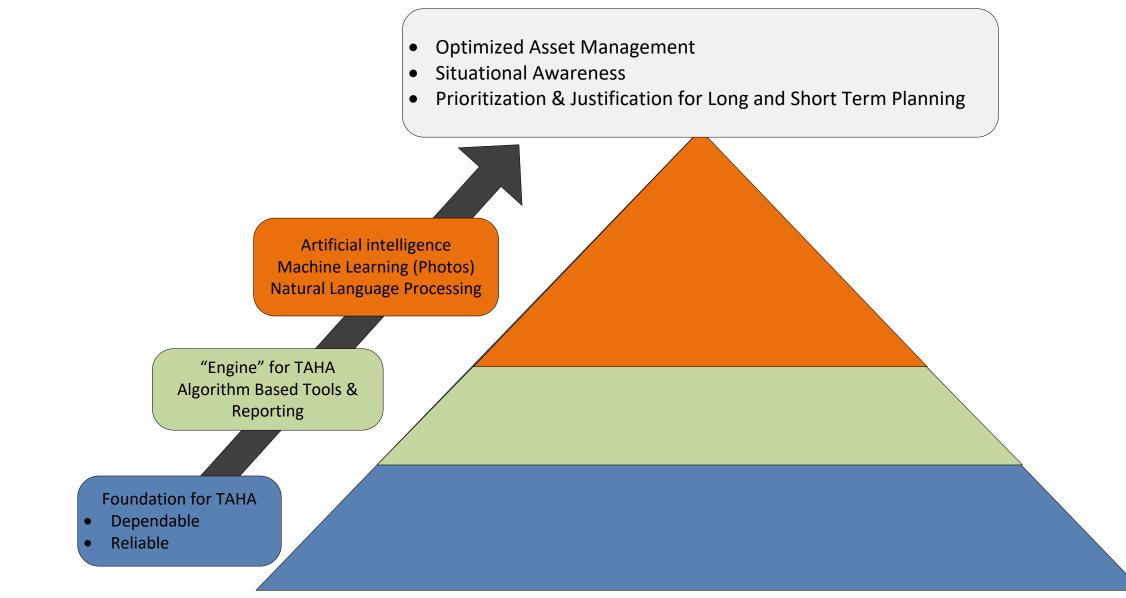
3 📀	Bisoft I Vision		🕀 New Display 🛛 🚺 🕴 CORP\SNNB01 🔤 🍞
\Diamond	TAHA_DGADashboardUp		
та ПЛ	Xcel Energy*	Transmission Asset Health Analytics	
Ш1	NSPBRKTR01 CFunctional Loc Serial Number Equipment Number Equipment Number Cooling Class KV RatingSU-1039-XFMR-1003 904922 	600 TDC0_sum 700 400 600 131 810 132 810 112/2002 259:00 FM 11/2015 100:00 AM 2132d	History Condensed
	Rogers Ratio: Calc Failed Total Dissolve Combustible Gas TDCG Condition Condition not set TDCG roc 0	Required Sample Interval: Condition not set Ratio 3: 2.294 Ratio 4: 0.000 Ratio 5: 10.936 (Acetylene/Methane) (Ethane/Acetylene) (Ethylene/Ethane) Doernenberg Ratio: No Fault Key Gas Result: Normal Condition Acetylene Status Condition 4 = Excessive Decomposition Methane Status Condition 1 = Normal Operation Ethane Status Condition 1 = Normal Operation Condition 1 = Normal Operation	20 20 20 20 20 20 20 40 40 20 40 40 40 40 40 40 40 40 40 4
	TDCG Sum 720.6	Ethylene Status Condition 3 = High Level of Decomposition Hydrogen Status Condition 1 = Normal Operation	 Low Energy Discharge (D1) High Energy Discharge (D2) Mixture of Faults and Discharge (D1)
	1/1/2015 1:00:00 AM	 2132d 	Now 11/2/2020

Workstream 2: DATA LAKE


Challenge

- Data scattered among many systems, different formats, recorded at different time intervals from various groups and no common key for asset information.
- Solution
 - Create series of "data pipelines" to a central staging and processing data base to create conformance
- Data
 - Identified data quality issues
 - Started cleaning process

Workstream 2: DATA LAKE


- DGA & Power Transformer Expert (EPRI)
 - Housed data from sources to complete calcs
 - Enabled EPRI PTX health models for Transformers
- Next Steps
 - Allow selected vendor to access data for TAHA
 - Enable internal data science and analytics on data
 - Continued Data Quality improvements to ensure trustworthiness of data

Data Lake

Data Lake: TAHA Foundation

🕖 Xcel Energy*

Workstream 3: Advanced Analytics

Challenges

- Lack of situational awareness of asset health and risk.
- Manual inputs required to build and maintain assets
- Inconsistent criteria application across OpCos
- Lack of real time reporting
- Solution
 - Use advanced analytics (algorithms and Al)
 - Consistently report on the state of the asset across all asset categories
 - Enable long and short-term planning and execution
 - Deliver high levels of service, control costs, and balance risk

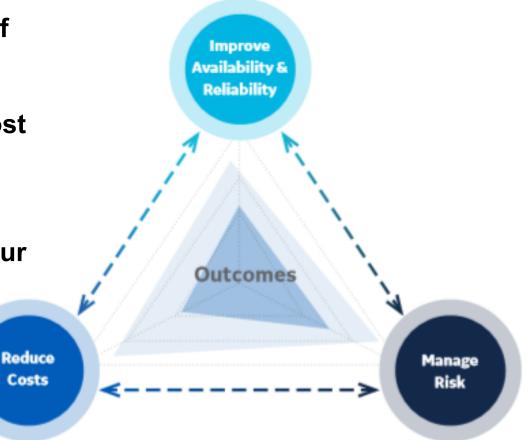
Workstream 3: Advanced Analytics

• RFP

- Generated 250 questions based on use cases
- Interviewed peers from multiple proposals and scored for comparison
- Narrowed to two vendors, then selected GE's Asset
 Performance Management platform
- Next Steps
 - Vendor recommendation
 - Build phase, implementation, continuous improvement phase, etc.

General Purpose of TAHA

- Combine different types of asset data
- Explore capabilities
- Provide analytics for maintaining, replacing right equipment at right time with operational awareness
- GE Asset Performance Management (APM) system: explore data by introducing algorithms for different assets

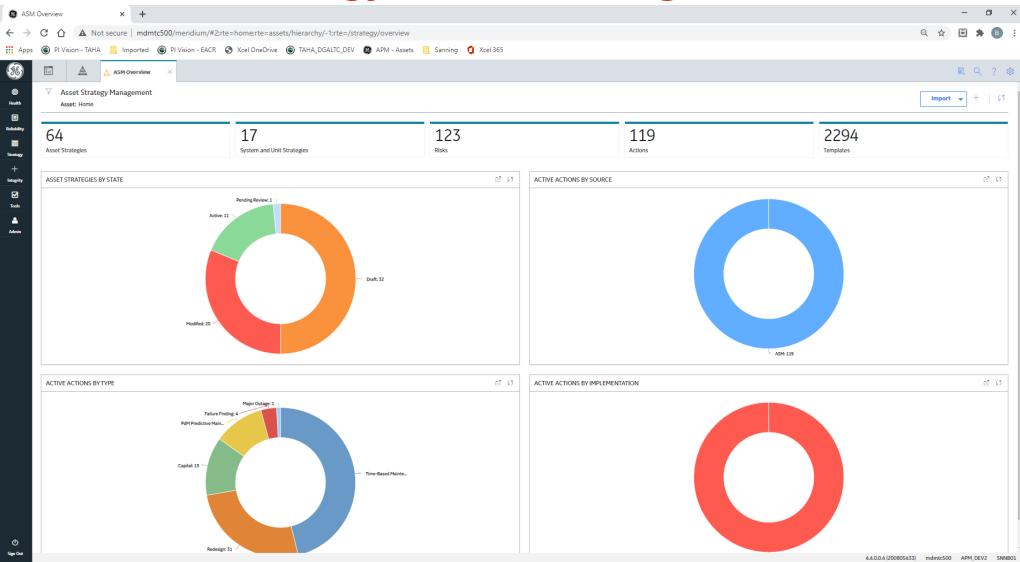


GE Asset Performance Management (APM)

A continuous loop of improvement

Xcel Energy seeks to optimize the performance of our assets. Increasing asset reliability and availability while optimizing maintenance costs, mitigating operational risks and reducing total cost of ownership.

By optimizing our data for our assets in one tool, TAHA will allow us to reduce costs, understand our assets and failures and manage risks.



APM Grid Health Dashboard

		× 🙆	Grid Heoard-V3	× 🍄 Chartssh	shboard ×						
	h Dashboard-V3										C Edit Mode
Time Range: A	ALL Taxonomy Cate	ALL Taxonomy	y Class: ALL Taxonon	ny lype: ALL Asse	et: OII PIR						
QUERY_SELECT_HE	ALTH INDICATOR	COLLECTION LIS	Т				C ⁷ Ω ⁵ AHIZONE		E7 65	AMI ZONE	
66							Pood.	-3		/ling	5
AGGREGATION	AHI %	AHI CPLI %	ERL YEARS	POF %	ACI K\$	ARIK\$ AMLS	% 000	3		1000	0
Average	85.4	29	28.2	1.1	6500	73 83.3		0		Long Contraction	0
Max	100	35.1	50	2		100	New Parts	0		athica.	1
Min	70.2	2.2	11	0.4		0	Callo Ler	0		and Contraction and	6
										Cotal C	Count
01QUERY_SELECT_	50 100 200		BREAKDOWN LIST			1 - 3 of 3 Results 🤟		Count			COUR
			BREAKDOWN LIST		ERLIYEA		POF(%)	ACIIKS)	ARIKS) ↓	AMI(%)	AGE
01QUERY_SELECT_	HEALTH INDICATO								ARI(K\$)↓ 22	AMI(%) 0	
01QUERY_SELECT_ 86 ID	HEALTH INDICATO		AHI CPLI(%)		ERLIYEA		POF(%)	ACI(K\$)			AGE
01QUERY_SELECT_ & ID 100527	HEALTH INDICATO AHI(%) 81		AHI CPLI(%) 35.1		ERLIYEA 18.9		POF(%) 1.1	ACI(K\$) 2000	22	0	AGE 30
01QUERY_SELECT_ 66 10 100527 100737	HEALTH INDICATO AHI(%) 81 70.2		AHI CPLI(%) 35.1 35.1		ERLIYEA 18.9 11		POF(%) 1.1 2	ACI(K\$) 2000 1000	22 20	0 100	AGE 30 44
01QUERY_SELECT_ & ID 100527 100737 100502	HEALTH INDICATO AHI(%) 81 70.2 70.9		AHI CPU(%) 35.1 35.1 35.1		ERLIVEA 18.9 11 11.4		POF(%) 1.1 2 1.9	ACI(K\$) 2000 1000 1000	22 20 19	0 100 100	AGE 30 44 42
01QUERY_SELECT_ & ID 100527 100737 100502 103065	HEALTH INDICATO AHI(%) 81 70.2 70.9 92		AHI CPU(%) 35.1 35.1 35.1 35.1 35.1		ERLIYEA 18.9 11 11.4 33.1		POF(%) 1.1 2 1.9 0.6	ACI(K\$) 2000 1000 1000 1000	22 20 19 6	0 100 100 100	AGE 30 44 42 29
01QUERY_SELECT_ 66 10 100527 100737 100502 103065 1206	HEALTH INDICATO AHI(%) 81 70.2 70.9 92 97.9		AHI CPU(%) 35.1 35.1 35.1 35.1 35.1 35.1 31.7		ERLIYEAI 18.9 11 11.4 33.1 44.8		POF(%) 1.1 2 1.9 0.6 0.4	ACI(K\$) 2000 1000 1000 1000 1000	22 20 19 6 4	0 100 100 100 100	AGE 30 44 42 29 11

APM Asset Strategy Overview Page

TAHA APM Plan/Vision

2020 & 2021	2022 & Beyond					
Criticality	Advanced Analytics					
Health	Cloud Migration					
Reliability	Automation Additional Assets Onboarded					
Asset Strategy						
Reliability Centered Maintenance	Integration With Unmanned Aerial Vehicles					
Grid content						
EPRI algorithms						
KPIs and Metrics						

